

April 19th 2018

Replacement AutoEncoder

A Privacy-Preserving Algorithm for Sensory Data Analysis

Hamed Haddadi

Joint work with:

Mohammad Malekzadeh and Richard G. Clegg

Context

- Location (~50m)
- Microphone

- Location (~3m)
- Microphone
- Gyroscope
- Accelerometer
- Barometer
- Magnetometer
- Thermometer
- Proximity
- Ambient Light
- Humidity

Temporal Inferences on Sensory Data

Real-Time Transformation based on Corresponding State

Replacing Sensitive Sections with Non-Desired ones

We propose a Hybrid Architecture

- We apply a privacy-preserving **transformation** on raw data at the **Edge**
- Then send transformed data to the **Cloud** for performing **deep analysis** and receive the **promised services**.

Privacy-Utility Tradeoff

The High-Level Architecture of the Solution

Why Autoencoders?

- To Discover the most salient features of the data.
 - A bottleneck: Middle Layer Size << data dimension. e.g. : 50 << 1000
- Force to discover the essence of the data in order to reconstruct it.

Key Idea: Remove Black Feature While Decoding Data

- 1. Encode raw data, X, into a new representation, Y.
- Decode y into a privatized version, Z, using only white and grey features which have been learnt by the model.

Training the RAE

A Real-World Case Study

- Activity Recognition
- Three datasets of Sensor Data generated by wearable devices.

		Name of Dataset			
	#	Opportunity	Skoda	Hand-Gesture	
	0	null	null	null	
	1	open door1	write notes	open window	
	2	open door2	open hood	close window	
	3	close door1	close hood	water a plant	
	4	close door2	check front door	turn book	
	5	open fridge	open left f door	drink a bottle	
	6	close fridge	close left f door	cut w/ knife	
	7	open washer	close left doors	chop w/ knife	
Activities	8	close washer	check trunk	stir in a bowl	
	9	open drawer1	open/close trunk	forehand	
	10	close drawer1	check wheels	backhand	
	11	open drawer2		smash	
	12	close drawer2			
	13	open drawer3			
	14	close drawer3			
	15	clean table			
	16	drink cup			
	17	toggle switch			
Subjects		4 people	1 person	2 people	
Sampling Rate		30 Hz	98 Hz	32 Hz	
Dimension (d)		113	60	15	

Experimental Setup

- RAE : A 7-layers Deep Autoencoder
- Activity Recognizer: A Deep Convolutional Autoencoder
 - We implemented the state-of-the-art for activity recognition using sensory data^[1]

Skoda Dataset : F1-Score for Activity Recognition

Hand	List of Inferences (Table I)	Original	Transformed	
Left	$I_w = \{4, 8, 9, 10\}$	97.92	96.32	White-Listed
	$I_b = \{1, 5, 6, 7\}$	96.24	0.00	Black-Listed
	$I_g = \{0, 2, 3\}$	94.34	93.42	Gray-Listed
Left	$I_w = \{2, 3, 5, 6, 7, 9\}$	96.52	93.23	White-Listed
	$I_b = \{4, 8, 10\}$	97.88	0.00	Black-Listed
	$I_g = \{0, 1\}$	93.86	94.85	Gray-Listed
Right	$I_w = \{1, 4, 10\}$	97.56	94.9	White-Listed
	$I_b = \{2, 3, 8, 9\}$	97.97	0.00	Black-Listed
	$I_g = \{0, 5, 6, 7\}$	92.33	88.23	Gray-Listed
Right	$I_w = \{2, 3, 5, 6, 7, 9\}$	95.76	91.06	White-Listed
	$I_b = \{4, 8, 10\}$	97.39	0.00	Black-Listed
	$I_g = \{0, 1\}$	94.31	92.39	Gray-Listed

Skoda Dataset : Confusion Matrix

Hand-Gesture Dataset : F1-Score

Subject	List of Inferences (Table I)	Original	Transformed	
#1	$I_w = \{1, 2, 3, 4, 9, 10, 11\}$	94.11	90.15	White-Listed
	$I_b = \{5, 6, 7, 8\}$	95.75	0.26	Black-Listed
	$I_g = \{0\}$	95.04	96.54	Gray-Listed
#1	$I_w = \{1, 3, 4, 5, 6, 7\}$	95.23	90.45	White-Listed
	$I_b = \{2, 8, 9, 10, 11\}$	94.53	0.62	Black-Listed
	$I_g = \{0\}$	95.04	97.46	Gray-Listed
#2	$I_w = \{1, 3, 4, 5, 6, 7, 8\}$	97.21	93.30	White-Listed
	$I_b = \{2, 9, 10, 11\}$	92.54	0.71	Black-Listed
	$I_g = \{0\}$	95.89	97.53	Gray-Listed
#2	$I_w = \{2, 3, 5, 6, 7, 9\}$	96.10	92.13	White-Listed
	$I_b = \{4, 8, 10\}$	96.96	0.52	Black-Listed
	$I_g = \{0, 1\}$	95.70	97.56	Gray-Listed

Hand-Gesture : Confusion Matrix

Opportunity Dataset: F1-Score

Subject	List of Inferences (Table I)	Original	Transforme	d
#1	$I_w = \{9, 10, 11, 12, 13, 14, 15, \overline{16}, 17\}$	71.75	64.32	White-Listed
	$I_b = \{1, 2, 3, 4, 5, 6, 7, 8\}$	79.15	0.21	Black-Listed
	$I_g = \{0\}$	88.93	89.70	Gray-Listed
#1	$I_w = \{1, 2, 3, 4, 5, 6, 7, 8, 15, 17\}$	76.87	75.93	White-Listed
	$I_b = \{9, 10, 11, 12, 13, 14\}$	71.49	1.32	Black-Listed
	$I_g = \{0, 16\}$	84.44	82.08	Gray-Listed
#3	$I_w = \{9, 10, 11, 12, 13, 14, 16\}$	74.92	77.07	White-Listed
	$I_b = \{1, 2, 3, 4, 15, 17\}$	76.16	0.92	Black-Listed
	$I_g = \{0,5,6,7,8\}$	84.98	81.58	Gray-Listed
#3	$I_w = \{1, 2, 3, 4, 5, 6, 7, 8, 15, 17\}$	70.32	65.05	White-Listed
	$I_b = \{9, 10, 11, 12, 13, 14, 16\}$	74.92	6.31	Black-Listed
	$I_g = \{0, \overline{1}\}$	93.72	92.95	Gray-Listed

Opportunity : Confusion Matrix

Visualization: An MNIST example

Digit 0 is a Gray-Listed data

t-Distributed Stochastic Neighbor Embedding t-SNE

Original Data

Transformed Data

Threat Model : Using GANs to detect Replaced intervals

When Adversaries have access To user Original Data When Adversaries DON'T have access To user Original Data

Conclusion

- RAE:
 - A hybrid architecture for locally transforming sensor data on edge devices.
- Inference-Specific Transformation:
 - Privacy-preserving data reconstruction based on learned features correspond to different inferences.

Take Home

Encode data into a feature set, then replace sensitive information with non-sensitive not-desired features in the reconstruction (decoding) phase.

Future Directions

- How we can provide a **statistical guarantee** (probabilistic bound) for sensitive information which can still be inferred from the transformed data?
 - Differential Privacy : Composition Theorem?
 - Mutual Information : Joint Distributions?
- Correlation among repeated measurement:
 - o little by little information leakage
- What is the Complexity / Cost of the solution for running on Edge devices?

Thank You!

Replacement AutoEncoder: A Privacy-Preserving Algorithm for Sensory Data Analysis

We are looking for postdocs and PhD students!

Hamed Haddadi Imperial College London

https://haddadi.github.io/

h.haddadi@imperial.ac.uk

@realhamed