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Context
• Location (~3m)
• Microphone
• Gyroscope
• Accelerometer
• Barometer
• Magnetometer
• Thermometer
• Proximity
• Ambient Light
• Humidity

• Location (~50m) 
• Microphone

1973 2018



Inference-Specific Transformation

Temporal Inferences on Sensory Data



Inference-Specific
Transformation

Raw Data Transformed Data

Real-Time Transformation based on Corresponding State



Replacing Sensitive Sections with Non-Desired ones



We propose a Hybrid Architecture

• We apply a privacy-preserving transformation
on raw data at the Edge

• Then send transformed data to the Cloud for
performing deep analysis and receive the
promised services.



Privacy-Utility Tradeoff

Perfect Privacy vs. Low Utility
I. Edge-Based II. Cloud-Based

Low Privacy vs. Perfect Utility

III. Hybrid
Good Privacy

and
Good Utility



The High-Level Architecture of the Solution
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EDGE CLOUD 

Replacement AutoEncoder (RAE)



• To Discover the most salient features of the data.
§ A bottleneck: Middle Layer Size << data dimension. e.g. : 50 << 1000

• Force to discover the essence of the data in order to reconstruct it.

Why Autoencoders? 



1. Encode raw data, x, into a
new representation, y.

2. Decode y into a privatized
version, z, using only
white and grey features
which have been learnt by
the model.

Key Idea: Remove Black Feature While Decoding Data
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Training the RAE
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A Real-World Case Study

• Activity Recognition

• Three datasets of Sensor
Data generated by
wearable devices.



Experimental Setup

• RAE : A 7-layers Deep Autoencoder

• Activity Recognizer: A Deep Convolutional Autoencoder
§ We implemented the state-of-the-art for activity recognition using sensory
data[1]
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Third Party Model  Replacement Autoencoder User’s Time-Series 
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[1] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, “Deep convolutional neural networks on multichannel time series for human activity recognition.” in IJCAI, 2015, pp. 3995–4001.



Skoda Dataset : F1-Score for Activity Recognition
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Skoda Dataset : Confusion Matrix

Original Data Transformed Data



Hand-Gesture Dataset : F1-Score
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Hand-Gesture : Confusion Matrix

Original Data Transformed Data



Opportunity Dataset: F1-Score
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Opportunity : Confusion Matrix

Original Data Transformed Data



Visualization: An MNIST example

Original Data

Transformed Data

Original Data

Transformed Data

Black-Listed

White-Listed

Digit 0 is a Gray-Listed data



t-Distributed Stochastic Neighbor Embedding t-SNE
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Threat Model : Using GANs to detect Replaced intervals

When Adversaries have access
To user Original Data

When Adversaries  DON’T have access
To user Original Data



Conclusion
• RAE:

– A hybrid architecture for locally transforming sensor data on edge 
devices.

• Inference-Specific Transformation:
– Privacy-preserving data reconstruction based on learned features 

correspond to different inferences.

Take Home
Ø Encode data into a feature set, then replace sensitive

information with non-sensitive not-desired features in the
reconstruction (decoding) phase.



Future Directions
o How we can provide a statistical guarantee (probabilistic bound) for
sensitive information which can still be inferred from the transformed data?
o Differential Privacy : Composition Theorem?
o Mutual Information : Joint Distributions?

o Correlation among repeated measurement:
o little by little information leakage

o What is the Complexity / Cost of the solution for running on Edge devices?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Utility Privacy 

Cost 
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