
Building User-Centred Privacy Enhancing Technologies

Hamed Haddadi

PETS 2024, Bristol, UK

Can we build trusted, scalable, human-centred systems:

… to perform accurate and personalized analytics;
… across the variety of ambient and personal data;
… without jeopardising the individuals’ privacy, security?

Part 1: IoT data

Data-Driven Networked Systems

4

They may listen to you
(e.g., smart speakers)

They may watch you
(e.g., smart doorbells)

They may know what
you watch (e.g., smart TVs)

140+ devices in
two different countries

5

Data Collection Methodology

• Monitor all traffic at the router

• per-device

• per-experiment

6

PCAP

Router

Internet traffic is the only signal
that (by definition)

all IoT devices produce

Most devices contact outside
testbeds’ privacy jurisdictions*

7

Categories UK TestbedDest. Country
US Testbed Categories

Most traffic goes beyond Europe

“Information Exposure From Consumer IoT Devices: A
Multidimensional, Network-Informed Measurement
Approach”, in ACM Internet Measurement Conference 2019,
(Community Contribution Award)

Blocking without Breaking
PETS 2021, Oakland 2023

8

iotrim.net

http://iotrim.net

Everyone loves the smell of user data…

We squeezed more ML into routers..

Then came the regulators, governments, and the cops…

9

Part 2: Mobile & web data

11

Telemetry is becoming popular

Apple uses local differential privacy to help protect the privacy of user activity in a
given time period, while still gaining insight that improves the intelligence and
usability of such features as:

• QuickType suggestions
• Emoji suggestions
• Lookup Hints
• Safari Energy Draining Domains
• Safari Autoplay Intent Detection (macOS High Sierra)
• Safari Crashing Domains (iOS 11)
• Health Type Usage (iOS 10.2)

For each feature, Apple seeks to make the privacy budget small while still collecting
enough data to to enable Apple to improve features. Apple retains the collected data
for a maximum of three months. The donations do not include any identifier, and IP
addresses are not stored.

For Lookup Hints, Apple uses a privacy budget with epsilon of 4, and limits user
contributions to two donations per day. For emoji, Apple uses a privacy budget with
epsilon of 4, and submits one donation per day. For QuickType, Apple uses a privacy
budget with epsilon of 8, and submits two donations per day.

For Health types, Apple uses a privacy budget with epsilon of 2 and limits user
contributions to one donation per day. The donations do not include health
information itself, but rather which health data types are being edited by users.

For Safari, Apple limits user contributions to 2 donations per day. For Safari domains
identified as causing high energy use or crashes, Apple uses a single privacy budget
with epsilon of 4. For Safari Auto-play intent detection, Apple uses a privacy budget
with epsilon of 8.

The Count Mean Sketch technique allows Apple to determine the most popular emoji to help
design better ways to find and use our favorite emoji. The top emoji for US English speakers
contained some surprising favorites.

Techniques
Local differential privacy guarantees that it is difficult to determine whether a certain
user contributed to the computation of an aggregate by adding slightly biased noise
to the data that is shared with Apple. But before adding this noise, it’s necessary to
define a data structure that captures a sketch of user input with a small number of bits.
Apple currently makes use of two specific techniques:

Apple Differential Privacy Technical Overview 2

! ❤ # $ % & ' () *

12

But it comes at a cost

13

Browser telemetry, Rappor

14

Browser telemetry, Prio

15

Browser telemetry, Dprio, Prio+

DPrio: E�icient Di�erential Privacy with High Utility for Prio Proceedings on Privacy Enhancing Technologies 2023(3)

information about G . The requirements of this system are analo-
gous to the properties of a zero-knowledge proof system [30] that
is non-interactive; however, Prio is designed for a setting where the
role of the veri�er is partitioned among several mutually untrusted
parties. In particular, SNIPs ensure that the information encoded
in the SNIP is both valid (i.e, the information is encoded correctly)
and zero-knowledge (i.e, the servers learn nothing beyond whether
the SNIP is valid or not), assuming that all servers are honest.

In Prio, the server-to-server computation cost is independent
of the complexity of the circuit or the size of the value and is
basically the cost of computing Verify locally. The client-to-server
communication grows linearly with the size of the Verify circuit.

3 RELATEDWORK
We present related work in central and local di�erential privacy.
We then discuss Dwork-MPC, a multi-party protocol to generate
noise, and past work on assumptions of non-collusion.
Central Di�erential Privacy. In the central DP model, the data
curator is assumed to be trusted, and can view all client records. The
data curator then directly chooses the appropriate amount of noise
and adds it directly to the data. The US Census Bureau used central
DP to protect sensitive information in the 2020 census [1]. Program-
ming frameworks like PINQ [39] and Ektelo [51] are popular for
leveraging central DP. This model is able to guarantee high data
utility, a goal we similarly maintain for our constructions. However,
it is undesirable when no such a trusted data curator exists.
Local Di�erential Privacy. In local di�erential privacy, each client
sends their data along with DP noise to the central server. This
ensures that the clients’ data is di�erentially private to the central
server and the rest of the clients. Apple [49] and Google [27] use
this model to gather analytics from millions of users. The bene�t of
local DP is that each client does not have to trust any other party.
The downside is that it introduces noise on the order of the number
of clients. This is only valuable in instances with a lot of data and
patterns that are still evident despite the noise.
Assumptions of Non-Collusion. To bridge the gap between the
low data utility induced by local DP and the high trust assumptions
by centralized DP, assumptions of non-collusion have been intro-
duced as a “best of both worlds” option. For example, introducing
an intermediate shu�er between clients and the aggregator can
provide anonymity and increase the utility [8, 26]. However, meth-
ods that rely on another party to perform shu�ing still requires
that clients locally generate noise and thus cannot achieve utility
equivalent to the central model [5]. A di�erent approach involves
secure computation [22] or encryption of noise to a separate trusted
party [47]. However, these models also introduce undesirably high
trust assumptions in single entities, whereas in the Prio model
requires distributing trust equally among the = servers.
MPC Protocols for DP.While Prio does not de�ne DP directly, the
authors reference anMPC protocol de�ned by Dwork et al. [19] that
we refer to as Dwork-MPC. In Dwork-MPC, noise can be generated
by anMPC protocol by servers, achieving (n, X)-DP. In its base form,
Dwork-MPC assumes that at least 1/3 of servers are honest. Eriguchi
et al. [25] make improvements to the communication complexity
or success probability of the algorithms in Dwork-MPC; however,
they assume that all servers are honest but curious.

There exists other work which focuses on implementing spe-
ci�c DP algorithms in an MPC setting. For example, there exist
mechanisms for computing a di�erentially private median [11, 12],
sampling biased coins [16], and graph queries [46]. Our work di�ers
from these approaches that design protocols for a particular setting,
since we focus on a generalizable, robust, and scalable framework
that computes statistics accurately with DP guarantees.

4 SYSTEM GOALS
The goal of this work is to provide a lightweight mechanism on
top of an existing Prio architecture to allow for an e�cient e�cient
mechanism to ensure di�erential privacy (DP), but with high utility.
In otherwords, we aim for the best of bothworlds— a data collection
mechanism with DP guarantees, without resorting to heavyweight
MPC protocols or outputting noisy data with low utility.

4.1 Overview of Prio
We now describe Prio. This system will serve as the base on which
we build a di�erentially private solution. The system is executed in
the following steps, illustrated by Fig 1. While Prio does not impose
hard constraints on the number of clients and servers, it assumes a
small number of servers relative to clients. We provide a range of
case studies and their impact on performance in Section 8.

(1) Upload. Each client encodes its data in a prescribed man-
ner and splits its private encoded value into one share per
server employing an a�ne-aggregatable function (AFE). The
client then constructs a SNIP to prove to the server that the
encoding satis�es certain correctness properties. The client
forwards the shares of the proof and the encoded data to the
corresponding servers.

(2) Verify and Aggregate. Upon receiving data from clients,
the servers verify the SNIP to ensure that the encoding is
well-formed. If the data is well-formed, the servers locally
aggregate their shares.

(3) Publish. Once enough veri�ed data has been received (e.g.,
if the protocol requires one million users’ data) and locally
aggregated, the servers reveal their local aggregations to an
analyst who can accumulate all of the data to obtain the �nal
statistic.

Figure 1: Overview of Prio. Clients send shares to servers
who validate the associated SNIP and aggregate the data.

The �nal statistic does not satisfy DP; however, the system is
equipped with several desirable properties. In particular, as long as
one server is honest, the Prio servers learn nothing about the clients’

377

Proceedings on Privacy Enhancing Technologies 2023(3) Dana Keeler, Chelsea Komlo, Emily Lepert, Shannon Veitch, and Xi He

parties adding noise directly as is the case in local DP, Client-DP, or
Server-DP (which is e�cient but decreases data utility) or servers
performing MPC operations to generate noise (which has high util-
ity but low e�ciency), we propose the following system. Clients
generate noise, but rather than adding noise directly, they secret
share their noise (as their data is secret shared) to the Prio servers.
The Prio servers then perform an e�cient two-round MPC protocol
(where the �rst round can be batched in a pre-processing phase, if
desired) to select a small number of clients’ noise to add. Section 7
shows that this achieves DP, while satisfying high data utility and
e�ciency for clients and servers.

Figure 2: Overview of DPrio. Clients send shares to servers
who validate the associated SNIP, select a client’s noise, and

aggregate the data with the noise.

6.1 Client Noise Generation and Submission
Setup. Initially, a system administrator will determine the set of
queries DPrio will support in this instance. It will compute the
sensitivity for each of the queries, and decide upon n and X values.

Protocol. At the time of submitting data to Prio servers, clients
additionally perform the following steps:

(1) Sample noise d $ F from a noise distribution F that leads
to a mechanism satisfying (n, X)-DP.

(2) Encode the noise using the same encoding mechanism as
the statistic they are sending to the Prio servers. Note that
this also includes a SNIP proving that the noise is validly
formatted.

(3) Generate secret shares B1, . . . , B= of the encoded noise using
additive secret sharing, such that d =

Õ=
8=1 B8 . This step is

the same as that used by the client to generate secret shares
of their statistic to send to the Prio servers.

(4) Submit each B8 along with the secret share of the client’s data
to the 8 thPrio server.

Any additive mechanism such as the Gaussian or Laplace mech-
anism can be used with the protocol. An additive mechanism is one
where achieving DP only requires adding noise to the statistic. We
now expand on the noise generation and encoding steps.

6.1.1 Noise Generation. To generate noise, all clients begin by
sampling a value from a distribution, where the parameter of this
distribution is �xed at the time of system setup and is chosen to
satisfy the de�nition of (n, X)-DP. Each client then encodes this
noise and generate a SNIP in a manner identically to that of the
statistic at hand, as described in Section 4.1. The client then sends
both the statistic SNIP and the noise SNIP to the DPrio servers.
The DPrio servers will choose 2 clients’ noise values at random
(Section 6.2). Before sending the aggregated sum to the data analyst,
the servers will add the selected clients’ noise to the sum. The data
analyst will only see the noised sum after aggregating all sums.

The tricky step in this protocol is that typical noise distributions
are not discrete, so to achieve DP the client would have to send
in�nite bits of noise. Since this is not computationally feasible, the
clients must truncate their noise. This issue can be addressed by
using discrete noise generation methods [3, 4, 15, 34, 50]. We adopt
the secure noise generation by [50] to generate integer noise in our
implementation. A more detailed analysis of the noise truncation
can be found in Appendix B. Similar analysis can be applied to
other forms of noise, such as discrete Gaussian noise [15].

6.1.2 Noise Encoding. In this model, we simply require clients
submit a proof that their noise falls within the same encoding
structure as the client’s data itself. This proof does not demonstrate
that clients have picked the noise from the correct distribution.
To protect against misbehaving clients that might simply submit
zero instead of correctly sampled noise, Prio servers perform an
MPC operation to select which client’s noise to add. Therefore, the
security of this construction depends on the assumed bound of
misbehaving clients (Section 7.2).

Encoding the noise uses the same a�ne-aggregatable encoding
(AFE), as in Section 2.2, as the data itself, allowing servers to aggre-
gate noise with the data without requiring reconstruction. Once
the client has submitted its noise to the servers, it deletes the noise.

While we demonstrate DPrio speci�cally as a DP mechanism for
Prio, the general approach DPrio follows can extend to alternative
private data collection designs that employ similar multi-server
models for distributing trust when performing data collection.

6.2 Server Noise Selection
We now describe an e�cient commit-reveal MPC protocol servers
use to select which clients’ noise. Let # be the number of clients
who have submitted noise. We assume that clients’ shares of this
noise ordered in some known manner and the Prio servers know
this ordering (we describe practical ordering options for implemen-
tations in Section 9). Assume the existence of some hash function.

380

16

Browser telemetry, Prochlo

PROCHLO: Strong Privacy for Analytics in the Crowd

Andrea Bittau? Úlfar Erlingsson? Petros Maniatis? Ilya Mironov? Ananth Raghunathan?

David Lie‡ Mitch Rudominer� Ushasree Kode� Julien Tinnes� Bernhard Seefeld�

?Google Brain ‡Google Brain and U. Toronto �Google

Abstract
The large-scale monitoring of computer users’ software
activities has become commonplace, e.g., for application
telemetry, error reporting, or demographic profiling. This
paper describes a principled systems architecture—Encode,
Shuffle, Analyze (ESA)—for performing such monitoring
with high utility while also protecting user privacy. The ESA
design, and its PROCHLO implementation, are informed by
our practical experiences with an existing, large deployment
of privacy-preserving software monitoring.

With ESA, the privacy of monitored users’ data is guaran-
teed by its processing in a three-step pipeline. First, the data
is encoded to control scope, granularity, and randomness.
Second, the encoded data is collected in batches subject to
a randomized threshold, and blindly shuffled, to break linka-
bility and to ensure that individual data items get “lost in the
crowd” of the batch. Third, the anonymous, shuffled data is
analyzed by a specific analysis engine that further prevents
statistical inference attacks on analysis results.

ESA extends existing best-practice methods for sensitive-
data analytics, by using cryptography and statistical tech-
niques to make explicit how data is elided and reduced in
precision, how only common-enough, anonymous data is an-
alyzed, and how this is done for only specific, permitted pur-
poses. As a result, ESA remains compatible with the estab-
lished workflows of traditional database analysis.

Strong privacy guarantees, including differential pri-
vacy, can be established at each processing step to defend
against malice or compromise at one or more of those steps.
PROCHLO develops new techniques to harden those steps,
including the Stash Shuffle, a novel scalable and efficient
oblivious-shuffling algorithm based on Intel’s SGX, and new
applications of cryptographic secret sharing and blinding.
We describe ESA and PROCHLO, as well as experiments
that validate their ability to balance utility and privacy.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

SOSP ’17, October 28, 2017, Shanghai, China

c� 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5085-3/17/10. . .

DOI: https://doi.org/10.1145/3132747.3132769
Reprinted from SOSP ’17,, [Unknown Proceedings], October 28, 2017, Shanghai, China, pp. 1–19.

1. Introduction
Online monitoring of client software behavior has long been
used for disparate purposes, such as measuring feature adop-
tion or performance characteristics, as well as large-scale
error-reporting [34]. For modern software, such monitoring
may entail systematic collection of information about client
devices, their users, and the software they run [17, 60, 69].
This data collection is in many ways fundamental to modern
software operations and economics, and provides many clear
benefits, e.g., it enables the deployment of security updates
that eliminate software vulnerabilities [62].

For such data, the processes, mechanisms, and other
means of privacy protection are an increasingly high-profile
concern. This is especially true when data is collected au-
tomatically and when it is utilized for building user profiles
or demographics [21, 69, 71]. Regrettably, in practice, those
concerns often remain unaddressed, sometimes despite the
existence of strong incentives that would suggest otherwise.
One reason for this is that techniques that can guarantee pri-
vacy exist mostly as theory, as limited-scope deployments,
or as innovative-but-nascent mechanisms [5, 7, 25, 28].

We introduce the Encode, Shuffle, Analyze (ESA) archi-
tecture for privacy-preserving software monitoring, and its
PROCHLO implementation.1 The ESA architecture is in-
formed by our experience building, operating, and maintain-
ing the RAPPOR privacy-preserving monitoring system for
the Chrome Web browser [28]. Over the last 3 years, RAP-
POR has processed up to billions of daily, randomized re-
ports in a manner that guarantees local differential privacy,
without assumptions about users’ trust; similar techniques
have since gained increased attention [6,7,70,74]. However,
these techniques have limited utility, both in theory and in
our experience, and their statistical nature makes them ill-
suited to standard software engineering practice.

Our ESA architecture overcomes the limitations of sys-
tems like RAPPOR, by extending and strengthening current
best practices in private-data processing. In particular, ESA
enables any high-utility analysis algorithm to be compatible
with strong privacy guarantees, by appropriately building on
users’ trust assumptions, privacy-preserving randomization,

1 PROCHLO combines privacy with the Greek word óqloc for crowds.

1

Somewhat surprisingly, if the set of reports can be parti-
tioned in the right manner, the utility of RAPPOR (and sim-
ilar systems) can be greatly enhanced by analyzing fewer re-
ports at once. By placing correlated data into the same parti-
tions, signal recovery can be facilitated, especially since the
square-root-based noise floor will be lower in each partition
than in the entire dataset.

In particular, the data required for the app/API example
above can be reduced by two orders of magnitude, if the
reported API is used to partition RAPPOR reports into 100
disjoint, separately-analyzed sets; for each separate API,
only 100 million reports are required to find the top 1000
apps, by the above arithmetic (see also §5.2’s experiment).

Unfortunately, such partitioning may greatly weaken pri-
vacy guarantees: differential privacy is fundamentally in-
compatible with the certain knowledge that an API was used,
let alone that a particular individual used that API [22, 32].
Therefore, any such partitioning must be done with great
care and in a way that adds uncertainty about each partition.

Another major obstacle to the practical use of locally-
differentially-private methods—based on our experiences
with RAPPOR—is the opaque, fixed, and statistical nature
of the data collected. Not only does this prevent exploratory
data analysis and any form of manual vetting, but it also ren-
ders the reported data incompatible with the existing tools
and processes of standard engineering practice. Even when
some users (e.g., of Beta or Developer software versions)
have opted into reporting more complete data, this data is
not easily correlated with other reports because it is not col-
lected via the same pipelines. In our experience, this is a
frustrating obstacle to developers, who have been unable to
get useful signals from RAPPOR analysis in a substantial
fraction of cases, due to the noise added for privacy, and the
difficulties of setting up monitoring and interpreting results.

Insights, Refinements, and Cryptographic Alternatives
The fundamental insight behind the ESA architecture is
that both of the above problems can be eliminated by
collecting individuals’ data through an intermediary, in a
unified pipeline. This intermediary (the ESA shuffler) ex-
plicitly manages data partitions (the ESA crowds), and
guarantees that each partition is sufficiently large and of
uncertain-enough size. This is done by batching and ran-
domized thresholding, which establishes differential privacy
and avoids the pitfalls of k-anonymity [22, 32, 33, 48]. Fur-
thermore, this intermediary can hide the origin of reports and
protect their anonymity—even when some are more detailed
reports from opt-in users—and still permit their unified anal-
ysis (e.g., as in Blender [6]). This anonymity is especially
beneficial when each individual sends more than one report,
as it can prevent their combination during analysis (cf. [70]).

ESA can be seen as a refinement of existing, natural
trust relationships and best practices for sensitive data an-
alytics, which assigns the responsibility for anonymity and
randomized thresholding to an independently-trusted, stan-

S

trust
boundary

A
Ea

Eb

Ec

a
a b

c

Σ{abc}~

trust
boundary

b

c

a

b

c

Figure 1: ESA architecture: Encode, shuffle, and analyze.

dalone intermediary. ESA relies on cryptography to de-
note trust, as well as to strengthen protection against dif-
ferent attack models, and to provide privacy guarantees even
for unique or highly-identifying report data. Those cryp-
tographic mechanisms—detailed in the remainder of this
paper—differ from the cryptography typically used to pro-
tect privacy for aggregated analysis (or for different pur-
poses, like Vuvuzela or Riposte private messaging [19, 72]).

Other cryptography-based privacy-protection systems,
such as PDDP, Prio, and Secure Aggregation [11, 15, 18],
mostly share ESA’s goals but differ greatly in their ap-
proach. By leveraging multiparty computations, they create
virtual trusted-third-party platforms similar to the central-
ized PINQ or FLEX systems, which support differentially-
private release of analysis results about user data [38, 52].
These approaches can improve user-data secrecy, but must
rely on added assumptions, e.g., about clients’ online avail-
ability, clients’ participation in multi-round protocols, and
attack models with an honest-but-curious central coordi-
nator. Also, in terms of practical adoption, these systems
require radical changes to engineering practice and share
RAPPOR’s obstacle of making user data overly opaque and
giving access only to statistics.

In comparison, ESA is compatible with existing, un-
changed software engineering practices, since the output
from the ESA shuffler can be gathered into databases that
have built-in guarantees of uncertainty and anonymity. Fur-
thermore, ESA offers three points of control for finding
the best balance of privacy and utility, and the best pro-
tections: local-differential privacy, at the client, randomized
thresholding and anonymity, at the privacy intermediary, and
differentially-private release, at the point of analysis.

3. The Encode-Shuffle-Analyze Architecture
The ESA architecture splits responsibility between en-
coders, shufflers, and analyzers, as shown in Figure 1.

Encoders run on the client devices of users, potentially
as part of the software being monitored. They can transform
the monitored data in a number of ways—in particular, by
converting its encoding—and they also use nested encryp-
tion to guarantee which parties process it and in what order.

4

5.2 Vocab: Empirical Long-tail Distributions
We consider a corpus of three billion words that is represen-
tative of English-speaking on-line discussion boards. Char-
acteristically, the distribution follows the power-law (Zip-
fian) distribution with a heavy head and a long tail, which
poses a challenge for statistical techniques such as random-
ized response. To demonstrate PROCHLO’s utility into recov-
ering a stronger signal further into the tail of the distribution,
we performed the following four experiments to privately
learn word frequencies on samples of size 10K, 100K, 1M,
and 10M drawn from the same distribution. In each experi-
ment, we measured the number of unique words (which can
be thought of as unique candidate URLs or apps in other ap-
plications) we could recover through our analysis.

In experiment Crowd, clients send unencoded words
along with a hash of the word as the crowd ID to a single
shuffler. Against the analyzer, this hides all words that occur
infrequently and allows decoding of words whose frequency
is above the threshold. However, a malicious shuffler may
mount a dictionary attack on the words’ hashes, and there is
no privacy against the shuffler and analyzer colluding.

Experiment Secret-Crowd builds on Crowd, but clients
encode their reported words using one-out-of-t secret shar-
ing, setting t to be 20, like the shuffler’s crowd threshold T .
At a minimal computational cost to clients (less than 50 µs
per encoding), privacy is significantly improved: uncommon
words and strings drawn from hard-to-guess data sources
(such as private keys, hash values, love letters, etc.) are pri-
vate to the analyzer. Alas, the shuffler can mount dictionary
attacks and statistical inference on crowd IDs.

Experiment NoCrowd uses the same secret sharing as
Secret-Crowd, but uses the same, fixed crowd ID in all client
reports. This protects against a malicious shuffler, as it no
longer can perform statistical inference or dictionary attacks
on crowd ID word hashes. Also, this slightly improves utility
by avoiding the small noise added by the shuffler during
the thresholding step. However, lacking a crowd to hide
in, clients now have less protection against the analyzer: it
will now receive reports even of the most uncommonly-used
words, and can attempt brute-force attacks on them.

Experiment Blinded-Crowd offers the most compelling
privacy story. In addition to secret-share encoding of words,
clients use blinded crowd IDs, with two-shuffler randomized
thresholding (§4.3). Assuming no collusion, neither the shuf-
flers nor the analyzer can successfully perform attacks on
the secret-shared words or the blinded crowd IDs. Even if
all parties collude, private data from a hard-to-guess distri-
bution (such as keys and unique long-form text) will still be
protected by the secret-share encoding.

For each experiment, we compute a histogram and mea-
sure utility based on the number of unique words recovered
in the analysis. Finally, we compare PROCHLO with RAP-
POR [28] and its variant where collected reports are parti-
tioned by small crowd IDs a few bits long (see the discus-

10K 100K 1M 10M

100

101

102

103

104

105

4062

18665

57500
91260

46

578

5921
28821

#
of

un
iq

ue
w

or
ds

re
co

ve
re

d

32

371

3730

21972

17

222

828

2

15

122

240

Ground truth (no privacy)
NoCrowd (no DP, t=20)
⇤-Crowd ("=2 1

4 , �=10�6)
Partition ("=2 1

4 , �=10�6)
RAPPOR ("=2, �=0)

Figure 5: A log-log-graph of the number of unique words re-
covered (Y-axis) on samples of 10 thousand to 10 million Vocab
words (X-axis). Using results in The ⇤-Crowd line results from us-
ing word hashes as the crowd-IDs, whereas NoCrowd offers less
privacy, using a naı̈ve threshold of 20 and no crowds. For compari-
son, RAPPOR and Partition show how pure local-differential pri-
vacy offers far less accuracy and much higher variance (error bars)
even when augmented with partitions as described in §2.2.

sion of local differential privacy in §2.2). This translates to
between 4 and 256 partitions for the sample sizes in the ex-
periment. The results are summarized in Figure 5.

Several observations are in order. The experiment of-
fering the highest utility is NoCrowd which performs no
crowd-based thresholding, but also provides no differential
privacy guarantees, unlike the other experiments. Encourag-
ingly, the ⇤-Crowd experiments show the utility loss due to
noisy thresholding to be very small compared to NoCrowd.
Both experiments recover a large fraction of the ground-truth
number of unique words computed without any privacy.

The challenge of using randomized response for long-
tailed distributions is made evident by the RAPPOR results,
whose utility is less than 5% that of our PROCHLO exper-
iments. The Partition results also show that the limitations
of local differential privacy cannot be mitigated by follow-
ing §2.2. and partitioning based on word hashes. For the Vo-
cab dataset, and the studied sample sizes, partitioning im-
proves RAPPOR’s utility only by between 1.13⇥ to 3.45⇥,
at the cost of relaxing guarantees from 2-differential privacy
to (2.25, 10�6)-differential privacy.

Table 3 gives wall-clock running time for the Vocab ex-
periment across varying problem sizes. Performance was
measured on an 8-core 3.5 GHz Intel Xeon E5-1650 pro-
cessor with 32 GB RAM, with multiple processes commu-
nicating locally via gRPC [35]. We note that these numbers
demonstrate what we naturally expect in our system design:
performance scales linearly with the number of clients and
the dominating cost is public-key crypto operations (roughly
3, 6, and 2 operations for each column, respectively).

14

17

• “STAR: Secret Sharing for Private Threshold Aggregation Reporting”, ACM CCS 2022, Distinguished Paper Award

Browser telemetry, P3A

18

Browser telemetry, STAR >> Nebula
STAR: SECRET SHARING FOR

THRESHOLD AGGREGATION REPORTING

Alex Davidson1 Peter Snyder1 Joseph Genereux1

E. B. Quirk1 Benjamin Livshits2 Hamed Haddadi1,2

1Brave Software

2Imperial College London

ACM CCS 2022 ::: Los Angeles, USA

pes@brave.com ::: alxdavids@brave.com

THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

randomness server

aggregation server

1. Randomness phase

2. Aggregation phase

⋄ Emphasis on simplicity
and performance

⋄ Well-known cryptography
(secret sharing, OPRFs)

⋄ Orders of magnitude
cheaper than
state-of-the-art

⋄ Malicious security

⋄ Auxiliary data support

⋄ Open-source rust code:
github.com∕brave∕sta-rs

OVERVIEW OF STAR 4

THE PROBLEM CONSTRUCTION ANALYSIS CONCLUSION

Shamir secret sharing

[x]

[PRF(sk,x)]

Oblivious PRF

Anonymizing proxy

x aggregation
server

msg

client_id

msg

Anonymizing proxy (such as Tor, or
Oblivious HTTP)

c = Enc(ek,m)

Symmetric encryption

CRYPTOGRAPHIC TOOLS 5

19

But, why do we need so many telemetry mechanisms?

• Different vendors, different requirements
• Greed over time
• Will interoperability (think EU DMA) or standardisation efforts help?
• Will lobbying by the bigger forces prevent true privacy?

20

Other device analytics: CSAM

21

CSAM failures

False positives

Collision attacks
Misuse by authoritarian governments

Potential expansion into messaging

22

“Private” ad attribution

23

And the list goes on… contact tracing, AirTags,..

24

Who are we building Privacy/Security tech for?

25

26

Distill knowledge to a small model such that
1) small model can be locally deployed

2) small model has still high utility

3) small model is private Teacher LLM

Student LLM
Remove layers by considering
1) Privacy risk of each layer
2) Utility impact of each layer

16

Potential solution: Use local models?

27

Potential solution: Auditable/Confidential Computing?

comet-cc.github.io

28

Potential solutions: [FHE? SMPC? ZKP? PIR? …]

29

Success stories

• Personal data systems face complex challenges and exciting opportunities;

• We need to think carefully when we design and implement data collection systems;

• Trusted and auditable client-side analytics are timely enablers for privacy, security, and
utility in the personal data ecosystem.

More information, software, and papers:
haddadi.github.io

Summary: We need to take charge!

