
Computer Networks 55 (2011) 3458–3468
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Discriminating graphs through spectral projections

Damien Fay a, Hamed Haddadi b,a,⇑, Steve Uhlig c, Liam Kilmartin d, Andrew W. Moore b,
Jérôme Kunegis e, Marios Iliofotou f

a Computer Laboratory, University of Cambridge, United Kingdom
b Royal Veterinary College, University of London, United Kingdom
c Deutsche Telekom Laboratories and Technische Universität Berlin, Germany
d NUI Galway, Ireland
e University of Koblenz-Landau, Germany
f University of California at Riverside, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Received 16 November 2010
Received in revised form 14 May 2011
Accepted 30 June 2011
Available online 20 July 2011

Keywords:
Internet topology
Topology generation
Spectral graph theory
Graph metrics
1389-1286/$ - see front matter � 2011 Elsevier B.V
doi:10.1016/j.comnet.2011.06.024

⇑ Corresponding author at: Royal Veterinary C
London, United Kingdom.

E-mail address: hamed.haddadi@cl.cam.ac.uk (H
This paper proposes a novel non-parametric technique for clustering networks based on
their structure. Many topological measures have been introduced in the literature to char-
acterize topological properties of networks. These measures provide meaningful informa-
tion about the structural properties of a network, but many networks share similar values
of a given measure [1]. Furthermore, strong correlation between these measures occur on
real-world graphs [2], so that using them to distinguish arbitrary graphs is difficult in prac-
tice [3].

Although a very complicated way to represent the information and the structural prop-
erties of a graph, the graph spectrum [4] is believed to be a signature of a graph [5]. A
weighted form of the distribution of the graph spectrum, called the weighted spectral dis-
tribution (WSD), is proposed here as a feature vector. This feature vector may be related to
actual structure in a graph and in addition may be used to form a metric between graphs;
thus ideal for clustering purposes.

To distinguish graphs, we propose to rely on two ways to project a weighted form of the
eigenvalues of a graph into a low-dimensional space. The lower dimensional projection,
turns out to nicely distinguish different classes of graphs, e.g. graphs from network topol-
ogy generators [6–8], Internet application graphs [9], and dK-random graphs [10]. This
technique can be used advantageously to separate graphs that would otherwise require
complex sets of topological measures to be distinguished [9].

� 2011 Elsevier B.V. All rights reserved.
1. Introduction information about the structural properties of a graph, but
Graphs offer a very versatile means of representing pat-
terns and relationships between entities in many different
fields of engineering and science. Significant research has fo-
cused on the development of techniques and algorithms to
facilitate the identification of patterns or structures within
individual graphs [11] and to quantify the characteristics
of such graphs [1]. These measures provide meaningful
. All rights reserved.
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many graphs share similar values of a given measure [1].
Furthermore, strong correlation between these measures
occur on real-world graphs [2], so that using some of them
to distinguish arbitrary graphs is difficult in practice [3].
Thus a key problem in clustering of graphs is the selection
of an appropriate feature vector. The technique presented
here proposes a universal feature vector methodology based
on a graph metric.

Another way to represent the information and the
structural properties of a graph is through the graph spec-
trum [4]. The spectrum of a graph is often compared to a
signature of a graph [5]. Important structural properties
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can be captured with the graph spectrum, e.g., its robust-
ness through the algebraic connectivity [12] or the speed
at which propagation occurs on it through the spectral ra-
dius [13]. However, all of these techniques use particular
parts of the spectrum (the first k eigenvalues for example)
while ignoring the rest of the information.

In this paper, we aim to distinguish between graphs
with different structural properties, without having to
make assumptions about which properties actually charac-
terize best the graphs under study. This is a difficult task
but as will be shown with appropriate weighting the entire
spectrum may be used to represent the structure of a
graph. In addition, this structural representation may be
used to construct a metric and so has many desirable prop-
erties which measures do not. Specfically a metric defines
consistent distances between graphs and is thus ideally
suited to clustering. Given consistent distances between
objects allows well known projections onto lower-dimen-
sional spaces. In this paper we demonstrate this with the
lower-dimensional projections; random projection (RP)
and multi-dimensional scaling (MDS). Indeed, in the exam-
ple applications shown the separation is such that it can be
seen clearly in a 2- or 3-dimensional space. Clustering this
data is then an easy task.

The example applications are: graphs produced by net-
work topology generators [6–8], Internet application
graphs [9], and dK-random graphs [10]. Our methodology
can be used advantageously to discriminate between
graphs that would otherwise require complex sets of topo-
logical measures to be clearly distinguished [9].

The rest of this paper is structured as follows. In Section
2 we present the related work. Section 3 explains the the-
oretical background on the weighted spectral distribution,
random projections and multi-dimensional scaling. We
provide applications of our technique in Section 4, and
conclude in Section 5.
2. Related work

Most of the related work for this paper comes from im-
age analysis. In this area, the use of clustering algorithms
on multiple graphs has been applied to the problem of ob-
ject identification and the related tasks of image matching
or clustering and image indexing in large databases. In
[14], the use of continuous time quantum walks, an exten-
sion of the classical random walk, applied to an auxiliary
graph constructed from two graphs which are to be
matched is proposed. A similarity measure is calculated
based on a set of probabilities derived from the interfer-
ence patterns associated with the two graphs and com-
bined with information on edge consistency. The
algorithm was evaluated using both synthetic data and
by completing a clustering analysis using a graph repre-
sentation of a database of images of objects viewed from
different perspectives. multi-dimensional scaling (MDS) is
used as a method of visualising the performance of the pro-
posed algorithm with this database of object images.

The use of graph spectral analysis techniques for image
clustering is examined in [15]. Various parameters derived
from the eigendecomposition of the adjacency matrix are
used to form representative feature vectors for individual
graphs. Wilson et al. [16] describes a further enhancement
on this approach based on the spectral decomposition of
the Laplacian of the graph. A feature vector formed from
the coefficients of the elementary symmetric polynomial
of the spectral matrix of the Laplacian was proposed due
to the fact that it offered a feature vector which was invari-
ant under permutation of the row indices. PCA, MDS and
Locality Preserving Project (LPP) techniques were used to
illustrate that the resultant feature vectors from graphs
representing images of three dimensional objects and im-
age boundaries exhibited well defined clustering behav-
iour. However, one issue with such spectral approaches is
the need to complete a complete eigendecomposition of
either the adjacency matrix or some derivation thereof.
While this is feasible for graphs with a relatively small
number of nodes (as is typical in image analysis problems),
it is not a tractable solution for graphs with large numbers
of nodes, as encountered in many complex network do-
mains. The WSD presented in this paper also uses the spec-
trum of the graph Laplacian. However, in contrast to
Wilson et. al. [16] we first show how that by weighting
the spectrum appropriately a metric of graph structure
can be formed. This metric forms the basis for graph clus-
tering as compared to the feature vectors used in [16]
(which are not metrics but graph measures).

Interest in the topic of clustering graphs is far more spo-
radic outside the field of image analysis. Some research in
the area exists in the fields of chemo-informatics and bio-
informatics, where graphs represent molecules, and the
number of sample graphs may be high. Maggiora and
Shanmugasumdaram [17] provide a high-level insight into
the use of graph clustering as a candidate technique for
comparing molecular structures during the process of drug
discovery and development. In their work, the clustering of
graph-based representations of the structure of molecules
is presented as one of several different feature abstraction
and machine learning techniques that have been proposed
for investigating molecular similarities in the field of che-
mo-informatics. In a more general setting, another signifi-
cant contribution is made in Reforgiato et. al. [18] which
describes an application-independent approach to the
problem of clustering of graphs. The proposed approach
utilises a number of different algorithms, based on identi-
fying important sub-graph structures, to implement a flex-
ible framework in which a clustering analysis can be
carried out on any form of graph based dataset. The
authors evaluated the performance of their proposed
framework by applying it to the task of clustering a chem-
ical [19] and a biological (i.e. RNA) based dataset and by
comparing the resultant clustering performance with other
non-graph based clustering algorithms.
3. Theoretical background

The weighted spectral distribution (WSD) is a graph met-
ric based on the normalised Laplacian matrix of a graph. It
can be used for comparing the difference in structure be-
tween two or more graphs. The metric depends on looking
at the distribution of random walk cycles of length N
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(where N is a parameter of the transform) and how they
are distributed across the graph. The technique was first
introduced in [20] and further details may be found there-
in. In this paper we extend this technique in two ways.
Firstly, we demonstrate how the WSD may be combined
with lower dimensional projection for graph clustering.
Secondly, we refine the WSD so that the bins selected for
the distribution target the data; in the original paper the
technique assumes a uniform bin size.

Specifically, define a graph, G = (V,E), to be a collection
of vertices, V, and undirected edges, E, with number of ver-
tices jVj = M. The adjacency matrix of this graph, A, is a
symmetric matrix with zeros along the diagonal (no self
loops) and with:

AðGÞðu;vÞ ¼
1; if u; v are connected;
0; if u; v are not connected;

�
ð1Þ

The normalised Laplacian L associated with a graph G =
(V,E) is constructed from A by normalising the entries of
A by the node degrees of A as

LðGÞ ¼ I � D�1=2AD�1=2
; ð2Þ

where D is a diagonal matrix of the degree of A;D ¼
P

iAi;j.
Expressing L using the eigenvalue decomposition,

LðGÞ ¼
X

i

kieieT
i ; ð3Þ

where ei and ki are the eigenvalues and eigenvectors of L
resp1 the WSD is based on the following theorem from [20]:

Theorem 3.1. The eigenvalues ki of the normalised Lapacian
matrix for an undirected network are related to the random
walk cycle probabilities as:

X
i

ð1� kiÞN ¼
X

C

1
du1 du2 . . . duN

; ð4Þ

where N is the length of the random walk cycles (Eq. (4) is
valid for each of N = 2,3, . . .), dui

is the degree of node ui and
u1 � � � uN denotes a path from node u1 of length N ending at
node uN, i.e. an N-cycle. For a proof see [20]. C is a set which
contains all the nodes which are part of a random walk cy-
cle in a graph; the set enumerates the walks.2 Theorem 3.1
states that the probability of taking a random walk of
length N that returns to the original node, is directly re-
lated to the weighted eigenvalues of L. This probability is
the ‘local structure’ of a node, i.e. its local connectivity.
Noting that the ki are unique3 to a graph it can be seen that
the WSD gives a ‘‘thumbprint’’ for the structure of a graph.
As shown in [20] this can be used for estimating the param-
eters of a topology generator that produce graphs which are
close (in the WSD sense) to the target graph.

The eigenvalues k0, . . .,kn�1 represent the strength of
projection of the matrix onto the basis elements. This
1 These are in general different from the eigenpairs of the walk Laplacian.
2 For example, a graph with 3 cycles and with N=4 would result in C

containing 3 elements, each containing 4 labels. Note: C is not easy to
generate in general and is never actually calculated in practice.

3 This is not strictly true but the proportion of co-spectral graphs is
thought to be insignificant.
may be viewed from a statistical point of view [21] where
each kieieT

i may be used to approximate A(G) with approx-
imation error inversely proportional to 1 � ki. However,
for a graph, those nodes which are best approximated
by kieieT

i in fact form a cluster of nodes. This is the basis
for spectral clustering, a technique which uses the eigen-
vectors of L to perform clustering of a dataset or graph
[22]. The first (smallest) non-zero eigenvalue and associ-
ated eigenvector are associated with the main clusters
of data. Subsequent eigenvalues and eigenvectors can be
associated with cluster splitting and also identification
of smaller clusters [23]. Typically, there exists what is
called a spectral gap in which for some k and j,
kk� kk+1 � 1 � kj�1� kj. That is, eigenvalues kk+1, . . .,kj�1

4

are approximately equal to one and are likely to represent
links in a graph which do not belong to any particular clus-
ter. It is then usual to reduce the dimensionality of the data
using an approximation based on the spectral decomposi-
tion. However, our technique deviates from clustering:
the approach proposed here is aimed at representing the
global structure of a graph, e.g., the presence or absence
of many small clusters (but not with their specific location),
which is essentially the spread of clustering across the
graph. This information is contained in all the eigenvalues
of the spectral decomposition.

The number of N-cycles is related to many graph prop-
erties. The number of 2-cycles is just (twice) the number of
edges and the number of 3-cycles is (six times) the number
of triangles. Hence

P
ið1� kiÞ3 is related to the well known

clustering coefficient (as discussed in [20]). An important
graph property is the number of 4-cycles. A graph which
has the minimum number of 4-cycles, for a graph of its
density, is quasi-random, i.e., it shares many of the proper-
ties of random graphs, including, typically, high connectiv-
ity, low diameter, having edges distributed uniformly
through the graph, and so on. This statement is made pre-
cise in [24] and [25]. For regular graphs, (4) shows that the
sum

P
ið1� kiÞ4 is directly related to the number of 4-cy-

cles. In general, the sum counts the 4-cycles with weights:
for the relationship between the sum and the quasi-
randomness of the graph in the non-regular case, see the
more detailed discussion in [26, Chapter 5]. The right hand
side of (4) can also be seen in terms of random walks. A
random walk starting at a vertex with degree du will
choose an edge with probability 1/du and at the next ver-
tex, say v, choose an edge with probability 1/dv and so
on. Thus the probability of starting and ending randomly
at a vertex after N steps is the sum of the probabilities of
all N-cycles that start and end at that vertex. In other
words exactly the right hand side of Eq. (4).

The left hand side of Eq. (4) provides an interesting in-
sight into graph structure. The right hand side is the sum of
normalised N-cycles whereas the left hand side involves
the spectral decomposition. We note in particular that
the spectral gap is diminished because eigenvalues close
to one are given a very low weighting compared to eigen-
values far from one. This is important as the eigenvalues in
the spectral gap typically represent links in the network
4 i.e., the eigenvalues at the centre of the spectrum.
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that do not belong to any specific cluster and are not there-
fore important parts of the larger structure of the network.

We now formally define the weighted spectrum as the
normalised sum of N-cycles as

WðG;NÞ ¼
X

i

ð1� kiÞN ; ð5Þ

However, calculating the eigenvalues of a large (even
sparse) matrix is computationally expensive. In addition,
the aim here is to represent the global structure of a graph
and so precise estimates of all the eigenvalue values are
not required. Thus, the distribution5 of eigenvalues is suffi-
cient. In this paper the distribution of eigenvalues f(k = k) is
estimated using pivoting and Sylvester’s Law of Inertia to
compute the number of eigenvalues that fall in a given inter-
val. To estimate the distribution we use K bins.6 A measure
of the graph can then be constructed by considering the dis-
tribution of the eigenvalues as

xðG;NÞ ¼
X
k2K

ð1� kÞNf ðk ¼ kÞ; ð6Þ

where the elements of x(G,N) form the weighted spectral
distribution:

WSD : G! RjKjfk 2 K : ðð1� kÞNf ðk ¼ kÞÞg: ð7Þ

In addition, a metric can then be constructed from x(G) for
comparing two graphs, G1 and G2. This takes the quadratic
norm between two WSDs as:

IðG1;G2;NÞ ¼
X
k2K

ð1� kÞNðf1ðk ¼ kÞ � f2ðk ¼ kÞÞ2; ð8Þ

where f1 and f2 are the eigenvalue distributions of G1 and
G2 and the distribution of eigenvalues is estimated in the
set K of bins 2[0,2]. Eq. (8) satisfies all the properties of a
metric (see [20]). For a simple worked example we refer
to reader to [20] Section 4.

3.1. Bin selection based on equalised weightings

The original WSD proposed using a uniform bin size
[20]. However, for a given number of bins, this may not
provide the best resolution. It is desirable to have a greater
resolution at those points which provide more information
at the cost of lower resolution elsewhere. As the weighting
in the WSD is polynomial, a uniform bin size does not
achieve this. The aim of this section is to assign bins in
the WSD given a particular value of N such that the sum
of the weighting in each bin is equal. The weighting in
the WSD may be expressed as:

wðxÞ ¼ ð1� xÞN; ð9Þ

where w(x) is the weight applied to an eigenvalue at x. In
order to equalise the power within each of the K bins we
require that:
Z kiþ1

ki

wðxÞdx ¼
Z kjþ1

kj

wðxÞdx 8i; j; ð10Þ
5 The eigenvalues of a given graph are deterministic and so distribution
here is not meant in a statistical sense.

6 The selection of these bins is considered below.
i.e. the weight in bin i 2 ki, ki+1 should be equal to the
weight in bin j 2 kj, kj+1. Eq. (10) may be solved by a simple
integration followed by solving the roots of the equation.7

The equalised bins for N = 4 and K = 50 are shown in Fig. 1.
Note how the weight assigned in each bin is uniform
(i.e. on the y-axis), given the non-uniform bins on the x-
axis. Intuitively, the bins should target the most important
points in the spectral distribution: those closest to 0 and 2.
This is indeed the case as seen in Fig. 1. An example of the
WSD for a graph using uniform bins and equalised bins is
shown in Fig. 2. There are 71 bins in each plot. Note how
the two WSDs are similar. However, the bins with equa-
lised weightings contains more detail in the region of high
amplitude while the uniform bins waste effort sampling at
points of less importance, i.e. around the spectral gap at 1.

It was found that the clustering resulting from equa-
lised bins gives much improved results, and is therefore
used in the remainder of this paper.

3.2. Lower dimensional projection

The WSD produces a mapping from RM�M # RjKj where
jKj = 71 bins are used in the examples in this paper. How-
ever, a 71-dimensional space is still too large to effectively
visualise clustering across graphs. In this section, we
introduce two commonly used techniques to map the
WSD into a lower dimension: random projection (RP) and
multi-dimensional scaling (MDS).

Specifically, given C different graphs the aim is to seek a
mapping from their WSDs into an l-dimensional space:
RC�jKj # RC�l where l� jKj. Typically l = 2 or 3 makes vi-
sual inspection possible. Note that the methods used are
parameter-free and so a natural clustering of the data is
sought, as opposed to a supervised method which applies
a mapping learned from training data.

3.2.1. Random projection
Random projection [27] is a technique often used in

compressed sensing, in which a high-dimensional matrix
7 The roots of a polynomial of order 4 or higher cannot be expressed
rationally and so are not presented here.
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is reduced to a low-dimensional matrix by multiplying the
data by a random matrix as:

Z ¼ XT; ð11Þ

where Z 2 RC�l is the projected data matrix, X 2 RC�jKj are
the WSDs of the C graphs, T 2 RjKj�l is the random projec-
tion matrix where each of the elements of T are drawn
from a Gaussian distribution T � N(0,1). As the rows of T
are normally distributed independent variables, their cor-
relation is zero in expectation and so they form (in expec-
tation) orthogonal vectors. In addition the norm of the
vector is 1 and so T forms a reduced basis in the original
data.

3.2.2. Multi-dimensional scaling
MDS [28] is a well-known technique which maps dis-

tances between objects onto a reduced dimensional space.
An intuitive example involves taking the distance matrix
commonly shown in the bottom corner of many road maps
and using it to reconstruct the map itself. Unlike random
projection, the technique uses the distance between the
graphs here defined in terms of the metric introduced in
Eq. (8), IðG1;G2;NÞ. First, a dissimilarity matrix, R, is con-
structed as:

Rði;jÞ ¼
IðGi;Gj;NÞ if i – j;

0 if i ¼ j:

�
ð12Þ

The goal of MDS is to find a set of vectors Z1, Z2, . . .ZjKj
that incrementally approximate the distance in the dissim-
ilarity matrix. Specifically, we wish to minimise the dis-
tance between the projected vectors and the original data
as:

C ¼ min
Z1 ;Z2 ;...ZjKj

X
i<j

ðkZi � Zjk � Rði;jÞÞ2; ð13Þ

where C is the cost function to be minimised. The minimi-
sation in this paper is performed using numerical optimi-
sation based on the eigenvector decompostion of R [29].
Typically, the first and second vectors, Z1 and Z2 are suffi-
cient to allow visualisation of clustering within the data.
In the sequel, we denote by WSD+RP and WSD+MDS the
random projection and multi-dimensional scaling tech-
niques, respectively.
4. Applications

This Section provides some real-world examples of the
use of the proposed technique. We examine three scenar-
ios using the WSD as a feature vector and then project this
feature vector into 2/3-D showing the clear separation of
the different classes of objects. Specifically, the three
examples, chosen from the areas of computer networking,
are:

� Network topology generators: Existing topology genera-
tors rely on very different rules to build graphs. We
show that the generated graphs can be clustered in a
low-dimensional space. This makes it possible to distin-
guish the different graph structures that are sampled by
these generators.
� Network application identification: Graphs constructed

from the interaction of nodes using the same applica-
tion can be distinguished with our techniques. Previous
work required multiple metrics, identified through
manual inspection in order to classify applications [9].
� Orbis based topologies and the dK-series: dK-series were

introduced in [10] to capture degree correlations in
real-world graphs. The resulting topology generator,
called Orbis, creates subsets of graphs embedded
according to the dK-series paradigm. We show that
the graphs generated by Orbis are much more similar
than previously thought and this is caused by a strong
implicit prior on the graph structures generated.

4.1. Topology generator projections

The aim of this section is to demonstrate how the
WSD+RP may be used to distinguish between topology
generators. A topology generator is a set of rules which
are used to build up a synthetic graph. For example, the
Waxman topology generator first generates M nodes dis-
tributed uniformly on a square and then connects points
according to probability:

pðu;vÞ ¼ ae�bhu;v ; ð14Þ

where p(u,v) is the probability of connecting nodes u and v,
a and b are parameters of the generator and hu,v is the
Euclidean distance between u and v on the square. The
AB and GLP topology generators are based on preferential
attachment while the INET model is based on a complex
model for how connections are formed in the Internet
(see [30] for more details).

For each type of topology generator a family of WSDs
may be generated by varying the parameters of the gener-
ator. The aim at this point is to show that these WSD fam-
ilies map onto different curves for different topology
generators. The WSDs generated by an AB model should
not correspond to any of those of the GLP model or the
Waxman model, etc. We begin by sampling from the fam-
ily of WSDs for each topology generator. Specifically we



−0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0

−0.005

0

0.005

0.01

0.015

0.02

0.025 GLP
BA
INET
Waxman

Fig. 4. 2-D projection of topology generator graphs. Note the x and y axis
are not relevant, only the separation of points. (M = 2000).

D. Fay et al. / Computer Networks 55 (2011) 3458–3468 3463
generate 100 topologies of each using random parameters.
71 bins are used in this experiment, resulting in a data ma-
trix of 400 WSDs (4 topology generators) of size 400 � 71.
Fig. 3 shows these families of WSDs side by side. Note, it is
not immediately clear from Fig. 3 that these WSDs do in
fact map to different points (clusters) in the 71-dimen-
sional space.

The next stage is to reduce the dimension of this data to
400 � 2, so as to be able to visualize the clustering in the
data. As we only need any projection that separates the
data classes (generators), not specifically an optimal pro-
jection, the RP technique is used.

Fig. 4 shows the projection of the sampled families onto
2 dimensions using random projections. This figure may be
thought of as a 2-D representation of ‘structural space’ in
which a greater separation of points represents a greater
separation of the corresponding graph structures.

The first thing to note about Fig. 4 is that most of the
Waxman WSDs lie well outside the range of the figure. This
is to be expected as Waxman topologies differ significantly
from the others. Second, the actual units of the graph are
irrelevant: only the separation of the points is meaningful.
At the right of the graph (around (0,0)), there is a cluster-
ing in which the GLP, AB and Waxman models all overlap.
This occurs at low parameter values when the graphs con-
tain few links and are therefore difficult to distinguish. The
GLP and AB graphs are very close for a large section of the
families. This occurs as GLP is similar in structure to AB but
not equal. In order to demonstrate this, a support vector
machine (SVM) [31] was used to determine the boundary
between the AB class and the GLP class. The decision
boundary is shown in Fig. 4 as a solid black line. Note the
boundary value is irrelevant outside of the training range.
As can be seen, the boundary separates the two classes effi-
ciently, with an 11% false classification rate. The Inet mod-
els generate a different cluster of projections which is
shown in Fig. 4. We conclude that our technique is able
to empirically distinguish different generated topological
structures.
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4.2. Network application identification

Traffic monitoring setup. The traffic traces used in this
work are collected from an OC48 optical link of the metro-
media fiber network (MFN) backbone in San Jose, CA. The
data was provided to CAIDA [32] by the WAND Research
Group (University of Waikato, New Zealand) using an
OC48 DAG interface card. The data used in our experiments
are from the 08/14/2002; between 09:00–10:00AM and
11:00–12:00PM. Over this time period, the captured traffic
contains on average close to 500 K flows (TCP and UDP) in
every five minute interval. The overall volume of data
approximates 1 TByte of raw IP packets. Several traces
from MFN are publicly available by CAIDA [32].

Representative sample. Our experience with traffic
graphs [33,9,34,35] showed that the MFN traces are a rep-
resentative sample of a large Tier-1 backbone link. Other
locations we studied in the past [33,9] include data from
the Palo Alto Internet eXchange (PAIX) and Internet2
(Abilene) backbones collected over different times of the
day, different days of the week, and over several years.
Using publicly available traces [32] allows other research-
ers to extend and verify our findings and contributions. All
traces are IP-anonymized and contain traffic from both
directions of the link.

Flow processing details. Throughout this paper we
group packets into flows using the standard method based
on the five tuple {SrcIP, SrcPort, DstIP, DstPort,
Protocol}. For a TCP flow, we generate a directed edge
starting from the node that sent the SYN packet. For the
UDP flows, we create a directed edge starting from the sen-
der of the first packet. To establish the ground truth for
flows (e.g., eDonkey, Web, etc.), we use a combination of
signature- and port-based traffic classifiers [9,34–36]. The
monitor used for collecting the MFN trace captured 44 by-
tes for each packet, which includes IP and TCP/UDP headers
and an initial 4 bytes of payload for some packets.
Approximately 40% of the flows are classified using stan-
dard payload-based signature matching techniques as used
in [37,38,34,35] and for the remaining flows we used the
port-based classifier from CoralReef [36], which performs
very well for the MFN data as observed in [9].
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Fig. 5. A 3-D plot of the application graphs mapped using WSD+RP. The upper left plot shows the x-y plane (i.e. first two dimensions); subsequent plots
show differing angles of view.
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On the upper left plot of Fig. 5, we observe a rather
clean separation between the projections of the graphs
belonging to different applications. Some overlap exists be-
tween some applications, e.g. Gnutella and eDonkey or SSH
and MP2P. Overlap between WINMX and MP2P or eDonkey
and Gnutella are expected, as the communication patterns
generated by these P2P applications are similar. However,
as can be seen in Fig. 5, the separation increases as we in-
clude a third dimension.

To investigate further, the data was split evenly into
two randomly selected groups; a training set and a test
set. The training set was then used to train a classifier
using standard discriminant analysis [39]. It was found
that overall there was a 14% misclassification error. More
specifically the confusion matrix is shown is Table 1. In this
matrix, entry i, j is the proportion of class i objects that are
misclassified as class j. Ideally, this matrix should have 1
along the diagonal. Note also that the sum of any row is
equal to 1 (i.e. 100%). Also note that the entry for i, j is
not necessarily the same as j, i. The diagonal and interest-
ing values are shown in bold font.

From Table 1 it can be seen that 22% of the Gnutella
graphs have problems being distinguished from the
eDonkey graphs (the reverse is not true). This is expected
given the similarity of their communication patterns. In
addition, 22% of FTP graphs are misclassified as HTTPS,
and 13% as MP2P. We expect FTP graphs to be similar to
HTTPS since both protocols have similar graph sizes and
both protocols are based on the client–server architecture,
with low degree nodes (clients) being connected with high
degree hosts (servers). 31% of the SSH graphs are misclas-
sified as MP2P. 17% of the SMTP graphs are misclassified as
eDonkey. Also, SMTP and eDonkey were also confused in
[34,9], because of the similarity in the architecture of the
two applications. While we leave it for further work to
study the exact reasons for these misclassifications, we
expect that the limited dimensionality of the projections,
as well as the similarity of the static graph structures are
the two most important reasons for the misclassifications.

4.3. Orbis and dK-series

The Orbis topology generator [10] is based on the con-
figuration model developed by Bollobás in [40]. The config-
uration model constructs a topology with a given degree
distribution. First a list of edges is constructed, with both
ends of the edge unlabeled. The edges are then assigned
node labels, at random, to satisfy the required degree dis-
tribution. For example, a given degree distribution may re-
quire one node with degree 2 and one node with degree 3,



Table 1
Confusion matrix for Internet applications. (the diagonal is shown in bold as a large off-diagonal elements; these being large misclassification probabilities).

Donkey Fast FTP Gnutella HTTP HTTPS MP2P SSH SMTP WINMX

Donkey 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
Fast 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
FTP 0.00 0.00 0.67 0.00 0.00 0.20 0.13 0.00 0.00 0.00
Gnutella 0.22 0.02 0.00 0.74 0.00 0.00 0.00 0.00 0.02 0.00
HTTP 0.00 0.00 0.06 0.00 0.91 0.03 0.00 0.00 0.00 0.00
HTTPS 0.00 0.03 0.03 0.00 0.00 0.94 0.00 0.00 0.00 0.00
MP2P 0.00 0.00 0.04 0.00 0.07 0.00 0.89 0.00 0.00 0.00
SSH 0.00 0.00 0.03 0.00 0.00 0.06 0.31 0.60 0.00 0.00
SMTP 0.17 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00
WINMX 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.04 0.74

Fig. 6. WSD of dK-series graphs. (Note: this figure is a recreation of Fig. 2
from [41]).
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9 The expected result is to have the 0 K projections (i.e. dots) spread
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etc. The first node is assigned to two of the, as of yet, unla-
beled edges and then the second node to 3 of the edges and
so on. At the end, all the edges are labeled at both ends and
these are connected to form the final graph. For the Orbis
topology generator, this process may be taken to the next
level by considering the joint degree distribution: the
probability that a node of degree k, say, is connected to a
node of degree j. This is achieved by an adjustment to
the configuration model in which the labeling of edges re-
quires the satisfaction of the joint degree distribution
rather than being simply random (see [10] for more
details).

Note that the degree distribution is implicitly given as a
marginal of the joint degree distribution. Likewise the
average degree is implicitly specified in the degree distri-
bution. In the Orbis terminology, these form the dK series
in which we may express graphs as subsets of each other:
0 K is the set of graphs with average degree, �k; 1 K is the set
of graph with degree distribution, p(k); 2 K are the set of
graphs with joint degree distribution p(k, j); 3 K and higher
elements of the series represent higher order cumulants. In
[10], it is proposed that dK 	 (d � 1)K � � � 	2 K 	 1 K 	 0 K
as shown diagrammatically in Fig. 6.

The aim of this section is to generate a hundred8 from
0 K, 1 K and 2 K topologies each, and then map these into
8 This number was found to be sufficient as can be seen by the clustering
in Fig. 9.
two dimensions using the WSD+MDS; essentially sampling
the areas of Fig. 6. The first stage involves generating a
(any) model with a specific joint degree distribution. For this
we used an AB model with 3000 nodes and parameters
[0.3,0.1]. This creates a relatively dense AB graph with a
power law degree distribution and connections based on
preferential attachment (see [42] for more details). The joint
degree distribution, degree distribution and average degree
of this topology are then used to generate the 300 graphs
using Orbis. Fig. 7 shows the resulting 300 WSDs of these
graphs. As can be seen in Fig. 7, three distinct WSD patterns
are produced.

Fig. 8 shows the 2-D projection of these 300 WSDs using
MDS. The first thing to note is that the 0 K, 1 K and 2 K
models form distinct clusters in the 2-D plane; this is not
the expected result9. The reason for this unexpected cluster-
ing can be understood through the examination of the de-
gree distributions of the 0 k models (see Fig. 9). The
average, lp(k), and the standard deviation, rp(k) of the 100
0 K and the 100 1 K degree distributions is shown in Fig. 9.
The degree distribution of the 0 K models is highly concen-
trated around the mean degree, �k 10, while that of the 1 K
across a large area with the 1 K projections somewhere within that area
and the 2 K projections inside the 1 K area.

10 This is because the 0 K graphs are Erd}os-Rényi graphs which are well
known to have a concentrated degree distribution.
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models is power-law (this is not obvious in a linear plot). In
addition, the distributions themselves are highly concen-
trated around their means, i.e. rp(k) is relatively small. In
summary, while it is possible that a 0 K model would pro-
duce a topology with power-law distribution, the probabil-
ity is vanishingly small.

A similar situation arises with the 1 K and 2 K graphs:
the chance of a 1 K model generating a 2 K model with
the same joint degree distribution is again extremely
small. This can be seen from the lack of overlap in their
projections in Fig. 8. The key problem with this approach
is that the mechanism used to generate the 0 K model does
not result in degree distributions which are picked uni-
formly from the set of all degree distributions.

Likewise, the 1 K graphs do not have joint degree distri-
butions uniformly sampled from the set of possible joint
degree distributions. In summary, while the three sets in
Fig. 6 do exist, the current mechanism only generates a
very small region of those sets in practice. The Orbis gener-
ator therefore does not sample uniformly graphs as would
be suggested from Fig. 6 (Note: there is a discussion in the
Conclusion of the consequences).
The key problem identified is that while Fig. 6 is
strictly true the topologies are not generated uniformly
in the sample space. In fact the 0 K model effectively
places a very tight prior on the distribution of degree dis-
tributions in the 0 K graphs. That is, the 0 K graphs have a
concentrated degree distribution; they should be com-
pletely random (no prior). One way to circumvent this
would be to sample a degree distribution randomly from
a distribution of degree distributions such that the aver-
age degree satisfies the specified one. This could then be
used to generate a 1 K model. The problem here of course
is that this approach requires using a dK + 1 model to
generate a dK topology. As the highest known practical
topology generator is a d2 generator this restricts the
topologies to d1.
5. Conclusions

Graphs offer a very versatile means of representing pat-
terns and relationships between entities in many different
fields of engineering and science. In this paper, we have
proposed a technique to distinguish between graphs with
different structural properties, without having to make
assumptions about which properties actually characterise
best the graphs under study. Our technique consists
projections of a weighted graph spectrum onto lower-
dimensional spaces, through random projections (RP) and
multi-dimensional scaling (MDS).

We showed that these two projections (RP and MDS)
turn out to be able to distinguish different types of graphs:
from synthetic ones produced by topology generators to
real ones resulting from the interactions between nodes
participating in specific applications. Throughout these
applications, we demonstrate that our technique can be
used advantageously to discriminate between graphs that
would otherwise require complex sets of topological mea-
sures to be clearly distinguished, e.g., [9].

The WSD+MDS technique presented may have many fu-
ture applications in the growing area of real-world graph
analysis from dynamic visualisation of graph structural
changes to evolution of graph based systems and identifi-
cation of undesirable structural regions for graphs (for
example in network security).
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