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Although the ability to collect, collate, and analyze the vast 

amount of data generated from cyber-physical systems 

and Internet of Things devices can be beneficial to both 

users and industry, this process has led to a number of 

challenges, including privacy and scalability issues. The 

authors present a hybrid framework where user-centered 

edge devices and resources can complement the cloud for 

providing privacy-aware, accurate, and efficient analytics.

The rapid rise in the development and imple-
mentation of cyber-physical systems and 
Internet of Things (IoT) devices is transform-
ing our interactions with the physical world. 

Today, smart devices and ambient sensors are perva-
sively and continuously collecting and transferring 

large volumes of diverse user data for a variety of pur-
poses, including security surveillance, health monitor-
ing, and urban planning. The majority of IoT devices are 
constantly online by default and rely on cloud-based 
machine-learning applications to gain insights from the 
data they collect. 

Private and Scalable
Personal Data Analytics
Using Hybrid Edge-to-
Cloud Deep Learning
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Corporate cloud-computing services 
provide on-demand, high-performance, 
and efficient computational power and 
considerable cost reduction. Despite 
these benefits, cloud computing comes 
with certain challenges. Mobile and 
broadband bandwidth and efficiency 
will be a major bottleneck when the 
smart homes and smart cars of the 
next decade upload vast amounts of 
data from hundreds of sensors to cloud 
processors. These cloud-based models 
will also impose major energy con-
straints on edge devices. 

Privacy issues are another important 
threat posed by cloud-based systems—
users risk exposing their sensitive 
data by sharing it and allowing service 
providers to harvest, analyze, or mon-
etize their data. For example, a major-
ity of cloud-based mobile applications 
are free, relying on information har-
vesting from their users’ personal data 
for targeted advertising. This prac-
tice has a number of privacy implica-
tions and resource impacts for users.1 
Cloud-based machine-learning algo-
rithms can provide beneficial services 
(for example, health or image-based 
search applications), but their reliance 
on excessive data collection can have 
consequences that are unknown to the 
user (for example, face recognition for 
targeted social advertising).

Recently, edge computing has been 
proposed as a solution to these chal-
lenges by locating the processing 
power in edge nodes that are nearer to 
the end user—similar to fog computing 
at the network edge. In this way, delay- 
sensitive data can be analyzed on the 
edge nodes and cloud services can be 
leveraged for more delay-tolerant tasks. 
However, an analytics service or app 
provider might not be keen on sharing 
their valuable data-processing mod-
els. It is not always possible to assume 

that the feasibility of local processing 
(for example, a deployed deep-learning  
model on an edge device such as a 
smartphone or a computer) is a via-
ble solution even if the task duration, 
memory, and processing requirements 
are not important for the user or if tasks 
can be performed when users are not 
actively using their devices (for exam-
ple, while the device is being charged).

One could suggest that fully cryp-
tographic–based algorithms are the 
ideal solution; however, the complex-
ity of encryption methods can be high 
for many IoT applications, especially 
those relying on machine-learning 
models or modules that need to be con-
tinuously available or online (such as 
multimedia applications or sensors 
in a self-driving vehicle). This can be 
more severe for deep models, which 
are nonlinear, complex functions. 
These are difficult to estimate with 
polynomial functions, which are an 
essential component of homomorphic 
encryption–based methods.2

On one hand, complete data offload-
ing to cloud services can have imme-
diate or future scalability and privacy 
risks; on the other hand, techniques 
relying on performing complete ana-
lytics at the user end come with their 
own resource constraints (such as 
storage and bandwidth constraints, 
energy limitations, or computational 
costs) and user experience penalties. 

In this article, we present a hybrid 
edge-to-cloud architecture where data 
processing is accomplished collabo-
ratively between private edge data- 
processing units and cloud services. 
In this way, we can leverage edge pre-
processing while addressing privacy 
concerns and allowing the end user 
to benefit from cloud-processing effi-
ciency. A schematic view of this frame-
work is shown in Figure 1. 

Our work focuses on achieving a 
compromise between resource-hungry 
local analytics on a private edge node 
and data-hungry and privacy-invasive 
cloud-based ser vices. The least- 
necessary amount of processing takes 
place on the edge node, which pre-
serves privacy, while the rest of the 
processing occurs in the cloud. Our 
main objective is to separate the fea-
ture extraction and inference phases; 
the former takes place locally, while 
the latter takes place in the cloud. 
With this approach, sensitive infor-
mation can be removed from the data 
during the feature-extraction phase 
on the edge node, while reducing 
data-transmission rates to the cloud. 
The extracted features are transferred 
to the cloud server for post-processing, 
and the user then receives the results 
from the cloud.

Cloud processing

Edge processing

Features

FIGURE 1. Hybrid edge-to-cloud 
framework for privacy-preserving machine 
learning. User data is collected and 
processed locally on private edge nodes 
to preserve sensitive information. The 
representation of data that is independent 
of sensitive information is sent to a 
cloud datacenter for applying complex 
inferences.
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REAL-WORLD APPLICATIONS
Advances in computer vision, machine 
learning, and cloud computing tech-
niques have provided new opportuni-
ties in a large number of multimedia 
IoT services.3 In this article, we explore 
the privacy challenges faced by these 
cloud-based multimedia IoT applica-
tions in the following domains. 

 › Image processing. The increasing 
quality of smartphone cameras 
and sensors, in addition to the 
rise in popularity of image-centric 
social media, has led to a variety 
of image analytics applications, 
such as scene tagging, image 
classification, face recognition, 
facial attribute prediction, age 
estimation, gender classification, 
and emotion detection.

 › Video processing. The excessive 
presence of CCTV cameras shows 
the importance of video record-
ing, indexing, and processing. 
Many homes and outdoor envi-
ronments are equipped with video 
surveillance systems to capture 
visual information for different 
purposes. For example, smart 
cameras are installed in care facil-
ities to provide patient monitor-
ing, and autonomous vehicles use 
many cameras to function safely.

 › Speech processing. Speech is 
increasingly becoming used in 
human–device interaction in the 
IoT domain. Many smart televi-
sions, phones, watches, ovens, 
and lights have voice-command 
features. Increasingly, devices 
like Google Home and Ama-
zon Echo are entering homes 
as intelligent assistants. In the 
next few years, speech recog-
nition systems will become an 
integral part of daily life. 

All of these applications require 
sophisticated processing of large vol-
umes of data, usually achieved by 
machine-learning algorithms. Con-
sider a classification problem such as 
face recognition. The classification 
model should be trained with a large 
dataset consisting of face photos labeled 
with the person’s identity. After train-
ing, the model can label a photo with its 
identity. In general, machine-learning 
problems are supervised, unsupervised, 
or semi-supervised. In supervised 
problems, true labels are available 
for training data—the goal is to pre-
dict the label of test data, similar to the 
face-recognition example. 

In this article, we focus on super-
vised applications, especially classi-
fication. Interested readers can refer 
to C.M. Bishop’s Pattern Recognition 
and Machine Learning4 to obtain more 
knowledge about machine learning. 
When true labels are not accessible, 
the problem is referred to as unsuper-
vised learning or clustering. When a 
small number of labeled data and an 
abundance of unlabeled data is avail-
able, semi-supervised methods use the 
unlabeled data to enhance the result of 
supervised classification based on the 
labeled data.

In all of these applications, an oper-
ator might be concerned about trans-
ferring the large volume of IoT data 
produced at the edge of the broadband 
or mobile network, and clients are con-
cerned about potential disclosure of 
their sensitive information. In many 
applications, a significant part of an 
individual’s data does not need to be 
recognized by a service provider.5 In 
surveillance or analytic applications, 
an individual’s identity is the most sen-
sitive information that is collected. For 
example, an individual walking by a 
plate-recognition camera in a parking 

lot should not be identifiable while 
classification or optical character- 
recognition techniques are being 
applied to the plate. In other words, 
individuals might want to be protected 
against undesired face-recognition 
models. Similarly, an individual using 
an IoT device voice prompt might want 
to be unidentifiable through their 
voice sessions. Privacy concerns also 
arise in health analytics, when appli-
cation users might not want to reveal 
their private information. 

These privacy concerns show the 
value and importance of a general 
framework that is capable of addressing 
privacy issues and has a long history in 
machine-learning applications. Train-
ing data privacy has been addressed 
in several previous works—for exam-
ple, Charu C. Aggarwal and Philip S. 
Yu surveyed classic methods that con-
sider public database privacy, such as 
randomization and k-anonymity.6 In 
addition, much effort has been made 
to apply differential privacy to learn-
ing models.7 For example, Reza Shokri 
and Vitaly Shmatikov8 and Martín 
Abadi and his colleagues9 attempted 
to make deep models differentially 
private. Nevertheless, less attention 
has been paid to user data privacy in 
the test phase, which is the main con-
cern of this article.

FRAMEWORK ABSTRACTION
Let us assume we want to execute a 
primary task (such as speech recog-
nition or image analysis) via cloud 
services. We could experience con-
straints due to limited local processing 
capabilities or conflicting commercial 
reasons. We also want to preserve sen-
sitive user information (for example, 
the identity of a speaker could be dis-
closed through his voice, or an individ-
ual could be identified through CCTV 
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footage while walking on a public 
sidewalk). Hence, the data shared with 
the cloud service should possess two 
important properties: inferring the 
primary task is possible and deducing 
sensitive information is not possible.

Sharing data in the cloud provides 
the probability of further inferences 
made on sensitive information. Edge-
based preprocessing of raw data can 
prevent revealing undesired features 
of the data, but such a task needs to 
have minimal burden due to vari-
ous limitations on the client side. To 
achieve this, we propose a general 
hybrid architecture containing two 
main modules: a feature extractor and 
an analyzer. The former is constructed 
on a private edge node (like a personal 
computer or home set-top box), and the 
latter is stored in the cloud. 

These modules and their interac-
tion are shown in Figure 2. Data from 
client devices is collected on the pri-
vate edge node and sent to the feature 
extractor, which gets the input data, 
applies a function to it, and outputs 
a set of new intermediate features, 
which would then be transferred to 
the cloud for performing the primary 
task. The analyzer receives the inter-
mediate features, infers the primary 
information, and if needed, returns 
the result to the client side. 

In this framework, it is critical to 
design a good feature-extractor mod-
ule. The intermediate features need to 
keep the necessary information about 
the primary task while protecting 
sensitive information. As the feature 
extractor operates locally, it should 
not be a complex routine. Hence, 
designing this module is a challenging 
and important task. 

As a use case, consider an image- 
tagging cloud service in which the 
identity of an individual could be 

exposed in an image from a live video 
stream. In this case, a simple feature 
extractor can detect faces and replace 
them with shaded regions. The ana-
lyzer receives this censored image and 
performs the image-tagging proce-
dure (for example, it labels the image). 
Another common example is speech 
recognition, where an individual 
might be concerned about being iden-
tified through his or her voice. One 
simple solution is to simply change the 
pitch frequency of the voice in the fea-
ture extractor to achieve anonymity. 
In these two cases, designing the fea-
ture extractor is simple and will not 
affect the analyzer’s results; however, 
this is not always the case.

In these examples, part of the data 
containing sensitive information 
is removed and the remaining data 
is considered the intermediate fea-
tures. However, this is not applicable 
when the part to be removed contains 
important information about the pri-
mary task. For example, facial attri-
butes like emotion or gender are also 
removed when removing sensitive 
information (the identity) by blocking 
a face region. Thus, we cannot use this 
method when our primary task is, for 
example, facial attribute prediction. 

When the primary and sensitive 
information are interlocked, we encoun-
ter a complex situation. In this case, we 

should consider the primary task in 
designing the feature-extractor mod-
ule for sensitive information removal. 
In our framework, we present a method 
based on deep learning, which consid-
ers both the primary task and sensi-
tive information in the design proce-
dure. Assuming the service provider 
is aware of the type of sensitive infor-
mation (such as identity), the follow-
ing scenario occurs: the service pro-
vider hands over a feature-extractor 
module to the client, which is guar-
anteed to consider the primary task 
and the sensitive information simul-
taneously. While the service provider 
does not have to share the analyzer, it 
must define a verification method for 
the privacy preservation. This process 
defines a privacy standard that the ser-
vice providers should adopt.

DEEP-LEARNING 
APPLICATIONS
Deep neural networks (DNNs) have 
become popular in machine learn-
ing, especially in multimedia appli-
cations.10 They provide highly accu-
rate classifiers that extract high-level 
information from raw data. Deep 
networks consist of different layers 
that follow each other. Each layer is a 
simple function of the previous layer, 
representing a more sophisticated 
concept than its previous layers. The 

Communication
channel

Private featuresRaw data
(image)

Output

Private edge Cloud server

AnalyzerFeature
extractor

FIGURE 2. Modules of the proposed framework. The analyzer in the cloud server has 
access to a reduced set of private features of the data provided by the feature extractor.
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initial layer is the raw input data and 
the final layer gives the inference 
result. All these layers together form a 
complex function that is applied to the 
input data and results in a perceptual 
inference. The intermediate functions 
are learned during the training phase 
via applying optimization methods 
on the training data. When the model 
is trained, it is ready to perform infer-
ence on any input data.

Convolutional neural networks 
(CNNs) and recurrent neural networks 
(RNNs) are the two most well-known 
structures used for multimedia appli-
cations. The former is suitable for 
image and video processing and the 
latter is used mainly for sequential data 
processing (such as text and video). 
In this article, we focus on CNNs as 
the most popular structure for image 
and video processing. Suppose that 
inference about a primary task is done 
with a pre-trained deep network (such 
as a ready-to-use network with many 
layers). We address how to embed 
this trained model in the proposed 

edge-to-cloud framework as follows.

Layer separation
In deep models, the higher layers 
become more and more specific to the 
primary task, while losing other irrele-
vant information that contains the sen-
sitive information we are concerned 
with. Based on this observation, we 
propose a layer-separation mechanism 
for a pre-trained deep network. 

 › First, choose an intermediate 
layer as a separation point.

 › Then, store the layers before the 
intermediate layer on the edge 
as the feature extractor. 

 › Finally, store the layers after the 
intermediate layer in the cloud 
as the analyzer.

There is a tradeoff when selecting 
the intermediate layer—choosing it 
from higher layers results in higher 
privacy for sensitive information, but 
also increases the computational costs 
on the client side. In our previous work 

we provide a detailed analysis of the 
privacy–complexity tradeoffs for dif-
ferent layers, alongside the selection 
of the appropriate intermediate layer 
based on the edge device resources and 
user privacy constraints.11

We refer to this simple separation 
of layers between the edge and the 
cloud as simple embedding, as shown 
in Figure 3.

Siamese embedding
To increase privacy when revealing 
the intermediate feature to the server, 
we can fine-tune the existing deep 
model for the primary task with a par-
ticular method. Fine-tuning is a com-
mon task in training deep models. We 
start from a pre-trained deep model 
and continue its training to achieve a 
desired goal. As a result, we obtain an 
updated model that can be used in the 
layer-separation mechanism. 

The main novelty of the proposed 
method relies on fine-tuning the 
model of the primary task by utiliz-
ing Siamese architecture12 based on 
the chosen intermediate layer. Sia-
mese architecture is a common way of 
training learning models, and is often 
used in face-verification applications 
to determine whether two images are 
of the same person. The main idea 
behind the Siamese network is forcing 
the representations of similar points 
(different images of the same person’s 
face) to become near to each other, 
and the representations of dissimilar 
points (images of different people’s 
faces) to become far from each other. 

To achieve this goal, our train-
ing dataset should consist of pairs of 
points, which can be similar or dissim-
ilar. For a pair of points, one function 
is applied to both and the distance of 
the two outputs is computed. Optimi-
zation is done based on a contrastive 
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FIGURE 3. Layer-separation mechanism. Primary layers of the deep network correspond 
to the feature extractor, and the rest of the model is considered the analyzer.
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loss function. For this loss function, 
the distance is maximized for two dis-
similar points and minimized for two 
similar points. This approach makes 
the feature extractor more private, 
protecting users against inference 
attacks on the cloud. We refer to this 
as Siamese embedding.

Siamese privacy
How can we relate the Siamese architec-
ture to privacy? Suppose our primary 
task is gender recognition through 
face portraits, accomplished by a pre- 
trained deep model. The sensitive 
information is the person’s identity, 
which should not be disclosed by using 
the intermediate data (for example, by 
a face-recognition system). In this sce-
nario, the only thing we care about is 
the gender of the face portrait and not 
its identity. We can model this fact by 
defining a new similarity criterion 
and then fine-tuning our model with 
a contrastive loss function. Consider-
ing all identities with the same gender 
as similar not only makes the gender- 
recognition model more robust, but 
also eliminates more identity infor-
mation from the intermediate fea-
tures. After fine-tuning with this 
method, male representations are very 
close to each other and are far from the 
female representations, which are also 
close to each other. 

Fine-tuning structure for privacy 
preservation is shown in Figure 4. We 
can apply this idea to any application 
by appropriately defining the similar-
ity criterion. Experiments show that 
using the Siamese embedding pre-
serves privacy while maintaining the 
accuracy of the primary task. 

Dimensionality reduction
An important issue with all cloud-
based services is their communication 

cost, which is usually too high. We 
address this concern by reducing the 
dimensionality of the intermediate 
features. 

Dimensionality reduction is used 
in a range of applications in statistics 
and machine learning, from visualiza-
tion to feature extraction. The dimen-
sionality of data can be reduced by lin-
ear or nonlinear transformations of 
a high-dimensional space to a lower 
one. One of the most popular dimen-
sionality reduction methods is the 
principal component analysis (PCA). 
PCA uses linear transformation, and 
the reduction and reconstruction pro-
cedures can be achieved by matrix 
multiplication.

The Siamese fine-tuning makes 
feature space much more robust in 
such a way that applying PCA on the 
fine-tuned space does not signifi-
cantly decrease the accuracy of the 
primary task. Using dimensionality 
reduction on the intermediate fea-
ture space brings us two advantages 
without a significant reduction in 
primary task accuracy: it highly 
reduces the edge-to-cloud commu-
nication cost and it highly increases 
the privacy based on the nature of the 
reduction-reconstruction procedure. 

The process of applying PCA on 
the intermediate feature is as follows. 
The service provider adds the PCA 
projection and reconstruction at the 
end of the feature extractor and the 
start of the analyzer, respectively. The 
extracted intermediate feature would 
be a low-dimensional vector that can 
be easily transferred to the cloud with 
low communication cost. By using 
these two methods, we introduce 
advanced embedding, in which Siamese 
fine-tuning is added as a pre-process 
and PCA projection is applied on the 
intermediate feature.

PRELIMINARY EVALUATIONS
We performed extensive experiments 
on face images, with the gender clas-
sification problem as the primary task 
and the identity of the individual as the 
sensitive information to be preserved. 
For each of the embedding methods, 
we evaluated the amount of informa-
tion that the intermediate feature has 
about gender and identity. We used 
an intuitive visualization technique, 
which demonstrates to what extent it 
is possible to reconstruct the original 
image from the intermediate data rep-
resentation. We employed a more rig-
orous analysis of our approach in our 
previous work, where we proposed a 
privacy measure to formally quantify 
the ability of this framework to pre-
serve sensitive information.11

To compare different deep embed-
ding methods, we used the gender clas-
sification model proposed by Rasmus 
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FIGURE 4. Siamese fine-tuning of the 
primary task. Intermediate features of two 
male face images are extracted via two 
identical convolutional neural networks 
(CNNs). They should be close to each other 
because they are considered similar. 
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Rothe and his colleagues.13 This model 
is a 16-layer CNN with the popular 
VGG-16 architecture.14 Rothe and his 
colleagues collected a large dataset of 
faces containing age and gender attri-
butes from IMDB and Wikipedia. Their 
model achieved 93 percent accuracy 
on the Wikipedia images. To provide a 
fair comparison, we also performed our 
experiments on this dataset.

We chose the fifth convolutional 
layer as our intermediate feature to 
build the feature-extractor module. In 
comparison with local device-based 
solutions, on average, our approach 
lowers the memory usage by 50 percent 
and the loading to less than 20 percent 
on a smartphone, which proves the effi-
ciency of the proposed hybrid solution.

Simple embedding needs nothing 
more than layer separation. Siamese 
embedding is done by fine-tuning the 
pre-trained model and then performing 
the layer separation. Advanced embed-
ding uses the same procedure with an 
additional process for applying PCA. We 
reduced the dimensions of the interme-
diate feature to eight. We analyzed the 
tradeoff between the accuracy of the 
gender classification (primary task) 
and the privacy of identity (sensitive 
information). Surprisingly, all these 
models reached almost the same accu-
racy of gender classification on aver-
age (93 percent). Therefore, they all had 
similar performances in satisfying the 
primary task. Hence, the only critical 

issue for comparison is their ability to 
maintain more privacy through their 
identity-preservation capability. 

We compared these methods’ 
privacy-preservation abilities by 
using a visualization technique. Visu-
alization tries to answer a key ques-
tion: Using just the intermediate layer 
of a deep network, what is the best rec-
ognition possibility for the original 
input image? Alexey Dosovitskiy and 
Thomas Brox answered this question 
by training a decoder—they used the 
intermediate layer as its input and the 
generating image as its desired out-
put.15 We used their method and com-
pared the results for different deep 
models (although it cannot be consid-
ered rigorous proof for superior per-
formance, it is highly intuitive).

The restored original images from 
intermediate features are illustrated in 
Figure 5 for different methods. Figure 
5 shows that the genders of all images 
in the simple and Siamese embed-
ding remain the same as the origi-
nal images. This is also the case for 
the advanced embedding because of 
the accuracy of gender classification, 
although it is harder to distinguish it 
from the reconstructed images. The 
original images are almost restored in 
the simple embedding. Therefore, just 
separating layers of a deep network 
cannot ensure acceptable privacy- 
preservation performance. Siamese 
embedding performs better than 

simple embedding by distorting the 
identity due to intrinsic characteris-
tics of the face (for example, the skel-
eton). Advanced embedding provides 
the best results because the decoder 
was not trainable and nothing can be 
deduced from intermediate images, 
including the person’s identity. As an 
advantage of this method, the commu-
nication cost is negligible compared 
to other cases because we only needed 
to upload eight real numbers to the 
cloud.  A more detailed analysis of this 
is presented in our previous work.11

Our framework is currently 
designed for pre-trained 
machine-learning inferences. 

In ongoing work, we aim to extend 
our method by designing a framework 
for machine learning as a service,16 in 
which users could share their data in a 
privacy-preserving manner for train-
ing a new learning model in a cloud 
server. Another potential extension to 
our framework will be providing sup-
port for other kinds of neural networks 
such as RNNs, which are useful for tem-
poral and sequential data processing.  
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