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Abstract — Link prediction has been widely used to extract missing information, identify
spurious interactions, evaluate network evolving mechanisms, and so on. In this context, similarity-
based algorithms have become the mainstream. However, most of them take into account the
contributions of each common neighbor equally to the connection likelihood of two nodes. This
paper proposes a model for link prediction, which is based on the node centrality of common
neighbors. Three node centralities are discussed: degree, closeness and betweenness centrality.
In our model, each common neighbor plays a different role to the node connection likelihood
according to their centralities. Moreover, the weak-tie theory is considered for improving the
prediction accuracy. Finally, extensive experiments on five real-world networks show that the
proposed model can outperform the Common Neighbor (CN) algorithm and gives competitively
good prediction of or even better than Adamic-Adar (AA) index and Resource Allocation (RA)

index.

Copyright © EPLA, 2013

Introduction. — Given a snapshot of a network at
time ¢, which new links or interactions among its members
are likely to occur at time t'(¢t <t¢')? We can formalize
this question as the link prediction problem [1]. Link
prediction is applicable to a variety of areas, such as
protein-protein interaction (PPI) prediction [2], identify-
ing spurious links [3], evaluation of network evolving mech-
anisms [4], e-commerce [5]. Zhou et al. [6] divided the
link prediction algorithms into three categories: similarity-
based algorithms, maximum-likelihood methods and prob-
abilistic models. The similarity-based algorithms are the
most used and they include node similarity and structural
similarity.

This paper will focus on node similarity algorithms.
Node similarity link prediction algorithms rely on the low
complexity, low time consumption and good prediction
accuracy, which become one of the most applied link
prediction approaches. Among which, Common Neighbor
(CN) [7] is the most widely used node-similarity-based
algorithm. The basic assumption is that two nodes
and y are more likely to have a link if they have many
common neighbors. CN only considers the number of
common neighbors. Further, many variants [8-10] of CN

are proposed by taking the degrees of nodes x and
y into account. Therein, the Preferential Attachment
(PA) index [4] is suitable for the prediction of scale-
free networks, where the probability that a new link is
connected to the nodes x and y is proportional to the
degrees k, and k,. Furthermore Adamic-Adar [11] and
Zhou et al. [12] improved the CN by restraining the
contributions of large-degree common nodes. They further
improved the prediction accuracy.

Most of the traditional approaches consider only the
degree of each common neighbor of two nodes. They can
improve the prediction accuracy, but, the improving is
limited, because the node degree cannot reflect the signif-
icance of the node completely. Murata and Moriyasu [13]
gave a weighted-common-neighbors approach. This paper
assumed that proximities between nodes could be esti-
mated better by using both graph proximity measures
and the weights of existing links in a social network.
It proposed a weighted graph proximity measures and
new scores that took weights of links into account. Liu
et al. [14] proposed a local naive Bayes (LNB) model for
link prediction in complex networks. In this model, differ-
ent common neighbors will play different roles and give
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different contributions. The proposed probabilistic model
is based on the Bayesian theory. The connection probabil-
ity of two nodes depends on the clustering coefficients of
the common neighbors. And the authors of [14] proposed
the improved LNB-CN, LNB-AA, LNB-RA according to
the naive Bayes model. In some networks, particularly
social networks, weak ties play more important roles than
strong ties. Lii and Zhou [15] provided the application of
weak ties for link prediction in weighted networks.

In this paper, we propose a model which is based on
the node centrality and weak-tie theory for link predic-
tion. In our model, the significance of each common
neighbor of two nodes is different according to their
centralities. The model can be divided into two parts.
In the first part, the centralities of all nodes will be
computed. Three node centralities are considered: degree
centrality, closeness centrality and betweenness centrality,
to measure the connection probability between two nodes.
Then, we combine the weak-tie theory with node centrality
for improving the prediction accuracy. Finally, we conduct
experiments on five real-world networks and compare
with other four node-similarity-based link prediction algo-
rithms: Common Neighbors (CN), Adamic-Adar (AA)
index, Resource Allocation (RA) index and LNB [14]. The
experimental results show that the proposed algorithm can
outperform the CN and gives competitively good predic-
tion of or even better than AA, RA and LNB.

The model based on node centrality and weak
ties. — A network can be represented as G(V, E), where
V and F are the sets of nodes and links, respectively.
Assuming N =|V| denotes the number of nodes, M =
|E| denotes the number of links. A= (a; ;) yis the
adjacency matrix of the network. The multiple links and
self-connections are not allowed. In this paper, we consider
undirected and unweighted networks only.

Most of the similarity-based link prediction algorithms
consider the contributions of each common neighbor of
two nodes equally. In fact, each common neighbor may
play different roles to the connection likelihood between
two nodes in some social networks [14]. In this paper, we
build a model based on the node centrality and weak-tie
theory, which can treat each common neighbor as different
contributions. Our model can be defined as follows:

say =Y (w(2)- £ (2)),

1, zel'(x)NnT(y),
f(z)= ,
0, otherwise,

where w (z) denotes the weight of node zj, in this paper,
and it represents the node centrality. I' (z) and T (y) are
the neighborhood of nodes z and y, respectively. The
function of f (zx) is the switch function. Its value is unity
if and only if the node z is the common neighbor of nodes x
and y. The free parameter 8 can adjust the contributions
of each common neighbor to the connection likelihood of

(1)

the two nodes. If 3 is greater than one, it will amplify the
contribution, otherwise, it can restrain the contribution.

Node centrality. The node significance is one of
the most important research contents in social-network
analysis. The significance represents the influence of a
node. From the network perspective, the significance of an
individual node is not an individual property, but arises
from the node relations with other ones. Social-network
analysis methods provide many useful tools for addressing
one of the most important aspects of the social structure,
such as the source and distribution of power [16]. The node
centrality can measure the significance of the node. The
position of the node in the network determines the ability
to capture resource, information, to have more or less
opportunities in favorable structure positions, and more
or less imposing constraints. In this paper, we focus on
three node centralities.

1) Degree Centrality.

Node degree refers to the number of connections or ties
with other nodes. In undirected networks, it is equal to the
neighbors of the nodes. The more ties a node has then, the
more power or significance it may have. Nodes which have
more ties have greater opportunities because they have
more choices. This autonomy makes them less dependent
on any specific other nodes, and hence more powerful.
Because they have many ties, they may have access to, and
be able to call on, more of the resources of the network as
a whole [16]. So, a very simple, but very effective measure
of a node centrality is its degree. The normalized degree
centrality of node i is defined as follows:

ki
N-1

DC; = (2)

where k; is the degree of node i, N is the number of nodes.
The higher DC; is, the more central nodes ¢ has.

2) Closeness Centrality.

Degree centrality measures might be criticized because
they only take into account the immediate-vicinity ties
that a node has, rather than indirect ties to all the
others. Considering this case, one node may connect to
a large number of other nodes, but these may be rather
disconnected from the network as a whole. So, it is only
in a central position in its local neighborhood. However,
closeness centrality emphasizes the distance of one node
to all others in the network by focusing on the geodesic
distance from each node to all others. The sum of these
geodesic distances for each node is the distance of the
node from all the others. And this can be converted into a
measure of closeness centrality [16]. Assuming d; denotes
the average distance from node i to all the others, d; can
be calculated as follows:

3)
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where d;; denotes the distance between nodes ¢ and j.
The closeness centrality of node ¢ can be defined as the
reciprocal of d;:

1 N
> di
Jj=1

We can see that the node 7 is more significant if C'C; is
larger. That is, if one node can access most of the other
nodes as a small step, this node will have high influence.

3) Betweenness Centrality.

Betweenness centrality views a node as being in a
favored position to the extent that the node falls on
the geodesic paths between other pairs of nodes in the
network [16]. That is to say, the more the nodes depend
on a node to make connections with other nodes, the more
power or significance that node has. Betweenness central-
ity represents the ability of capturing the flow of infor-
mation. Freeman [17] gives the definition of betweenness
centrality of node 7 as follows:

BC;= Y

sF#IFEL

ni
7375’ (5)
Gst
where g4 denotes the number of shortest paths from node
s to t, nk, is the number of g, which pass node i. The
normalized betweenness centrality is defined as follows:

2 nit
N2—3N+2 gst.

BC, = (6)

s#iF£L

We can also see that the higher BC; is, the greater
significance node i has.

Node-centrality-based algorithm.  In this section, we
introduce node-centrality-based link prediction algorithm.
Assuming T'(x) and T (y) denote the neighborhood of
nodes = and y, respectively, x; and y; are the element
of sets T' (z) and T (y) , respectively.

According to the CN algorithm, we can define three
node-centralities-based CN algorithms: degree-centrality-
based CN (DC-CN), closeness-centrality-based CN
(CC-CN) and betweenness-centrality-based CN (BC-CN),
which are called NC-CN algorithms. The formulas are
defined as follows:

Salc)yC_CN = Z Wpc (Z), (7)
zel(x)NI'(y)

Sgyc—czv = Z wee (2), (8)
zel(x)NI'(y)

sBCON = N wpe (2), 9)
zel(z)NT(y)

where z denotes the common neighbor of nodes x and y,
wpe (2), wee (2) and wpe (2) are the degree centrality,
closeness centrality and betweenness centrality of node z,
respectively.

From the three formulas we can see that the connection
probability is the sum of the three node centralities,
respectively. Because the node centralities of all nodes
are different, the different common neighbors will have
different contributions.

Combing weak ties with node centrality.  For some
networks, the weak ties play a more important role in
the link prediction [15]. Onnela et al. [18] had shown
that weak ties mainly maintain the network connectivity.
In our experiments, we also find that the pure node-
centrality-based link prediction algorithms (NC-CN) are
not the best. In this section, we introduce a free parameter,
3, to control the relative contributions of weak ties to
the similarity measure. When [ is greater than one, it
makes the larger centrality more significant than the lower
centrality. When [ is less than zero, it restrains the larger
centrality more than the lower centrality. When ( is in
the range (0,1), it equally restrains all nodes. It will
become the CN, if g is equal to zero. The parameter-
dependent indices for a node centrality based on the
common-neighbor algorithm, which combines with the
weak ties and is called NC-CN*, can be represented as
DC-CN*, CC-CN* and BC-CN*, respectively:

spOON = 3" (wpe (2)), (10)
zel'(x)NT'(y)

sOTNT = Y (wee (2)), (11)
zel'(x)NT'(y)

sEOONT = N (wse (2)” (12)
zel'(x)NT'(y)

These formulas show that the free parameter 3 can effec-
tively control the contributions of the common neighbors
of two nodes.

Experiments and results analysis. —

Data. We consider five real-world networks. The
empirical data used in this paper include i) USAir [19]:
The network of the US air transportation system, which
contains 332 nodes and 2126 links; ii) NetScience(NS) [20]:
A network of co-authorships between scientists who are
themselves publishing on the topic of network science,
the network has 1589 scientists and 2742 connections;
iii) Power Grid [21]: An electrical power grid of the western
US, with nodes representing generators, transformers and
substations, and edges corresponding to the high voltage
transmission lines between them, the network contains
4941 nodes and 6594 edges; iv) Yeast [2]: A protein-protein
interaction network of yeast containing 2361 proteins and
6646 interactions; v) C. elegans (CE) [21]: The neural
network of the nematode worm C. elegans, in which
an edge joins two neurons if they are connected by
either a synapse or a gap junction; the initial network
includes many loops and multi-lines, for convenience, we
eliminate all the loops and multi-lines; it contains 453
nodes and 2298 edges. Table 1 summarizes the basic
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Table 1: The basic topological features of the five experimental
networks. N and M denotes the total numbers of nodes and
links, respectively. (k) is the average degree of the network.
(d) is the average shortest distance between node pairs. C
represents the clustering coefficient. DC', CC and BC' is the
degree centralization, closeness centralization and betweenness
centralization of the whole network, respectively.

Networks USAir NS Power Yeast CE

N 332 1589 4941 2361 453

M 2126 2742 6594 6646 2298
(k) 12.807 3.451 2.669  5.63 8.94
(d) 2.74 582 18.99  4.38 2.66
C 0.749 0.798 0.107 0.388 0.308
DC 0.383 0.019 0.003 0.025 0.507
CC 0.465 0.012 0.056 0.207 0.543
BC 0.204 0.022 0.285 0.037 0.476

topological features of the networks and the three node
centralities. Wherein, DC, CC and BC are the degree
closeness and betweenness centralization of the whole
network, respectively. Special explanations can be seen in
paper [16].

To test the algorithm’s accuracy, all the network links,
FE, are randomly divided into two parts: the training set
ET, and the testing set, E'. Obviously, E = ET UE" and
ETNET =¢. In our experiments, we adopt k-fold cross-
validation. That is to say, we randomly divide all links into
k subsets (in this paper, k is 10 according to [6]). Each
time one subset is selected as testing set, the rest k—1
constitute the training set. The cross-validation process is
then repeated k times, with each of the k subsets used
exactly once as the testing set.

Two standard metrics are adopted in this paper,
AUC [22] and precision [23], to quantify the accuracy
of the prediction algorithms. AUC can be interpreted
as the probability that a randomly chosen missing link
(a link in ET) is given a higher score than a randomly
chosen non-existent link (a link in U\ E, where U denotes
the universal link set). In the implementation, among
n independent comparisons, if there are n’ times, the
missing link having a higher score, and n” times in which
the missing link and the non-existent link have the same
score, AUC can be calculated:

~ n/+0.5n"
- - .

AUC (13)

Precision is defined as the ratio of relevant links to the
number of selected links. In our experiments, to calculate
the precision, we firstly should rank all the missing and
non-existent links in decreasing order according to their
predicted scores. Then we focus on the top-L (here L=

100) links. If there are [ links in the testing set E¥ then
Precision =1/L. (14)

Results and analysis.  In this section, we first show
the performance of the three NC-CN algorithms with

different 3. Then, we compare our algorithms to other
four similarity indices: Common Neighbor (CN), Adamic-
Adar (AA) index, Resource Allocation (RA) index and the
LNB [14].

i) CN [7]: For a node z, let I'(z) represents the
neighborhood of x. Generally speaking, nodes =z and y
more probably have a link if they have more common
neighbors. The simplest measure of this neighborhood

overlap is the directed count, namely
Say =T (2)NT ()] (15)

ii) AA [11]: This similarity measure refines the simple
counting of common neighbors by giving the lower-degree
neighbors more weights, as

1
2 gk(2)

lo
zel'(z)NT'(y)

AA _
Ty

s (16)

iii) RA [12]: It further restrains the contributions of
large degree nodes, as

GRA _ 1
WS ARG

2€T (2)N0(y)

(17)

Just like many other papers [15,18], the top-L is set to
100 in our experiments. Figure 1 gives the variations of the
node centrality based on the common-neighbor algorithm
with different 3. The xz-axis denotes 8 and, the parameter
B € [—1,1]. The y-axis represents the precision measure. In
fig. 1(a), the best precision of DC-CN* is in the range 5 < 0
on all networks except the Power Grid. When g is equal to
zero, the maximum precision can be captured on the Power
Grid network. We also can find that the precision will
decrease when 3 is greater than zero. Figure 1(b) shows
the performance of the CC-CN* algorithm. We can see
that the optimal value of 3 is negative on all five networks.
However, the variance is not very obvious on Yeast and C.
elegans. As we can see, fig. 1(c) gives the same variance
with fig. 1(a). The difference is that the precision will
decrease more sharp when the free parameter ( is positive.

From fig. 1, we can see that the weak ties actually
play a more important role than the strong links on some
social networks, because the optimal precision values can
be obtained when the parameter [ is less than zero.

Figure 1 also indicates that the performance of the
NC-CN* algorithm is related to the clustering coefficient
(CC) of the network. From table 1 we can see that the CC
of NetScience is the highest. Accordingly, the precision is
also the best in fig. 1. The second is the USAir network.
Its CC is close to NetScience one. But the little difference
of CC will lead to a big difference in performance. Just
like table 1, the CC of NetScience and USAir is 0.798 and
0.749, respectively. The difference is only 0.049. However,
the precision of DC-CN* is 0.98 and 0.70, respectively. The
precision decreases by 28% with CC reducing by 4.9% only.

Table 2 and table 3 give the comparisons at the AUC
and precision measurements on five real-world networks,
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Fig. 1: The performance of the three NC-CN* algorithms with
different 8 on the five real networks. The z-axis and y-axis
represents (3 and precision measure, respectively. The square
curves, circle curves, star curves, plus curves and triangle
curves denote the USAir, NetScience, Power Grid Yeast and
C. elegans network, respectively. L = 100.

respectively. The bold face indicates the best value. Note
that the results are at the optimal (. From table 2 we
can see that the three pure node centrality link prediction
algorithms (NC-CN) are worse than the traditional CN,
AA, and RA. However, the three NC-CN* algorithms,
which take the role of weak ties into account, outperform
the CN except for the CC-CN* on Power Grid. The
DC-CN* are even better than AA except for Yeast and
better than RA in NetScience. Both CC-CN* and BC-
ON* outperform AA and RA on Yeast and are equal to
AA and RA on the Power Grid network, respectively. From
the AUC perspective, the three NC-CN* algorithms are
better than CN and partially outperform the AA and RA.
And the difference is less than 0.01.

Table 3 also shows that the three pure node-centrality-
based link prediction algorithms (NC-CN) are worse

Table 2: The prediction accuracy measured by AUC on
five networks. m is ten millions. The abbreviations DC-CN*,

CC-CN* and BC-CN* represent the highest precisions

obtained by eq. (13), respectively.
Networks USAir NS Power  Yeast CE
CN 0.947 0.933 0.587 0.704  0.905
AA 0.959 0.934 0.587 0.705 0.950
RA 0.964 0.934 0.587 0.704 0.959
DC-CN 0.921 0.933 0.587 0.703  0.787
DC-CN* 0.963 0.934 0.587 0.704 0.955
CC-CN 0.942 0.933 0.509 0.704 0.872
CC-CN* 0.953 0.933 0.587 0.705 0.934
BC-CN 0.909 0.932 0.509 0.702 0.765
BC-CN* 0.957 0.934 0.587 0.704 0.951

Table 3: The prediction accuracy measured by the preci-
sion metric (top-100) on five networks. The abbreviations
DC-CN*, CC-CN* and BC-CN* represent the highest preci-
sions obtained by eq. (14), respectively.

Networks USAir NS  Power Yeast CE
CN 0.63 0.81 0.10 0.27 0.21
AA 0.66 0.94 0.07 0.31 0.29
RA 0.63 0.95 0.08 0.24 0.27
DC-CN 0.59 0.39 0.06 0.16 0.12
DC-CN* 0.70 0.98 0.10 0.30 0.30
CC-CN 0.63 0.54 0.07 0.26 0.19
CC-CN* 0.65 0.92 0.12 0.28 0.22
BC-CN 0.47 0.06 0.02 0.05  0.05
BC-CN* 0.67 0.95 0.10 0.28 0.28

than the CN, AA and RA. However, the three NC-CN*
algorithms outperform the CN completely. DC-CN* and
BC-CN* are also completely better than RA. DC-CN* is
better than AA completely except on Yeast. BC-CN* is
better than AA except for Yeast and C. elegans. CC-CN*
is the best on Power Grid. It also outperforms RA except
for NetScience and C. elegans. In general, the DC-CN* is
the best in the three NC-CN* algorithms. Both table 2
and table 3 demonstrate that the NC-CN* algorithm
can further improve the prediction of links. And, the
performance is better when the cluster coefficient is
high. Just like the NetScience and USAir networks, the
precision further improves by 4% and 3% compared with
AA and RA, respectively.

Table 4 and table 5 give the comparisons with the
algorithms of paper [14]. From table 4, we can see that our
algorithms outperform those of paper [14] on C. elegans
and give competitive results on USAir. But, the AUC
of NC-CN* is worse than the local naive Bayes model.
From table 5, we can also see that our algorithms are
better than those of paper [14] on USAir and C. elegans,
and are worse than those of paper [14] on Yeast. This
may be because we eliminated loops and multi-edges
in Yeast. From these two tables, we conclude that the
proposed algorithm outperforms the algorithms of paper
[14] on some networks. Especially, it improves more when
the cluster coeflicient of the network is very low. In the
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Table 4: The comparison with paper [14] measured by AUC
on three networks. The abbreviations DC-CN*, CC-CN* and
BC-CN* represent the highest precisions obtained by eq. (13),
respectively. LNB-CN, LNB-AA and LNB-RA are the local
naive-model-based algorithm [14], respectively.

Networks USAir  Yeast CE
LNB-CN 0.959 0.916 0.862
LNB-AA 0.967 0.916 0.866
LNB-RA 0.972 0.917  0.867
DC-CN* 0.9638 0.7048 0.9558
CC-CN*  0.9534 0.7051 0.9349
BC-CN*  0.9578 0.7049 0.9517

Table 5: The comparison with paper [14] measured by the preci-
sion metric (top-100) on three networks. The abbreviations
DC-CN*, CC-CN* and BC-CN* represent the highest preci-
sions obtained by eq. (14), respectively. LNB-CN, LNB-AA
and LNB-RA are the local naive-model-based algorithm [14]
respectively.

Networks USAir Yeast CE
LNB-CN  0.612 0.689 0.138
LNB-AA 0.629 0.703 0.136
LNB-RA 0.633 0.625 0.129
DC-CN*  0.70 0.30  0.30
CC-CN* 0.65 0.28 0.22
BC-CN*  0.67 0.28  0.28

same way, the precision can improve by 16.2% comparing
DC-CN* with LNB-CN on C. elegans.

There are several conclusions to be drawn from these
tables. First, we can see that the pure node centrality
link prediction algorithms (NC-CN) are even worse than
the traditional CN. Second, the algorithms that take
into account the weak ties (NC-CN*) outperform the
CN completely and AA and RA on some networks and
give competitive results on other networks. Moreover,
our algorithms are even better than those of paper [14]
on some networks, especially the low-cluster-coefficient
networks. Third, the DC-CN* achieves the best perfor-
mance in the three node centralities link prediction
algorithms (NC-CN*), followed by BC-CN* and CC-CN*.
These results confirm that the node centrality combined
with weak ties can further improve the prediction
accuracy.

Conclusion. — This paper proposes a model based
on node centrality and weak-ties theory for link predic-
tion. To test our model, many experiments are imple-
mented on five real-world networks and the results are
compared to CN, AA and RA. The experiments show
that the pure node-centrality-based algorithm is even
worse than CN, AA and RA. However, it can outperform
the CN completely and AA and RA on some networks,
when the weak ties are combined with the node central-
ity link prediction algorithm. Moveover, we compare our
algorithm with [14]. The results indicate that our algo-
rithm can outperform LNB[14] in both AUC and precision,
especially on the low-cluster-coefficient networks. These

results demonstrate the effectiveness of the proposed
model in link prediction.
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