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ABSTRACT
Activity recognition using deep learning and sensor data can help
monitor activities and health conditions of people who need assis-
tance in their daily lives. Deep Neural Network (DNN) models to
infer the activities require data collected by in-home sensory de-
vices. These data are often sent to a centralised cloud to be used for
training the model. Centralising the data introduces privacy risks.
The collected data contain sensitive information about the subjects.
The cloud-based approach increases the risk that the data be stored
and reused for other purposes without the owner’s control. We
propose a system that uses edge devices to implement activity and
health monitoring locally and applies federated learning to facili-
tate the training process. The devices use the Databox platform to
manage sensor data collected in people’s homes, conduct activity
recognition locally, and collaboratively train a DNN model without
transferring the collected data into the cloud. We illustrate the ap-
plicability of the processing time of activity recognition on edge
devices. We use a hierarchical model in which a global model is
generated in the cloud, without requiring the raw data, and local
models are trained on edge devices. The activity inference accuracy
of the global model converges to a sufficient level after a few rounds
of communication between edge devices and the cloud.

CCS CONCEPTS
• Computer systems organization → Client-server archi-

tectures; • Computing methodologies → Supervised learn-
ing by classification.
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1 INTRODUCTION
The rapid progress of Internet of Things (IoT) makes it possible to
deploy a large number of low-cost devices that can continuously
collect different types of data, from ambient environments such as
room temperature and brightness to personal data such as basic
physiological data. With the help of modern machine learning
models such as Deep Neural Networks (DNNs), it is possible to
recognise people’s activities by analysing in-home monitoring data.
Machine learning methods for activity recognition [8] enable us
to monitor and predict people’s health and activities to help those
who need assistance and facilitate timely interventions to avoid
preventable adverse health conditions [7].

The training and inference phases of activity recognition often
require high computational resources which are usually provided
on the cloud. Sending large volumes of raw data to the cloud poses
privacy issues. The in-home sensory data are often personal, and
users often do not want to share them beyond their controlled home
environment. Ideally, for running deep learning on private data,
we hope that we do not need to release the raw data for both the
training and inference phases [18].

Edge computing [19] provides an alternative scheme to those
systems that directly release data to the cloud. It deploys devices
at the edge of the network, which is close to where data are gen-
erated (i.e., IoT sensors and devices in our scenarios), and brings
computation to data. The computational resources on the devices
make it possible to run many deep-learning applications, including
activity recognition at the edge [6] without releasing raw data to
the cloud, meanwhile providing lower latency and network traffic.

We propose a system that provides activity and health moni-
toring locally using in-home sensory data. In our system, an edge
device uses the Databox platform [15] as a gateway to aggregate and
manage the in-home sensory data. The machine learning method
conducts both model training and activity inference processes lo-
cally. To facilitate the training process, we coordinate the edge
devices, as clients, to form a federated learning (FL) system [14]
with a cloud server. The server periodically sends a global DNN
model to a selected set of clients and asks them to use their data to
train the model locally. The selected clients then send the trained
models back to the server, which aggregates these models into a
global model for next training cycles. By this means, all clients col-
laboratively train a global model for activity recognition through
repeatedly updatingmodels with the cloud server, without releasing
their raw data to either other clients or the server.

We evaluated our proposed system on a real edge device and also
through simulation, on three popular activity recognition datasets.
First, we implemented the local activity recognition using a Long
Short-TermMemory (LSTM)model [12] on a Raspberry Pi 4Model B
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Figure 1: System structure inside an edge gateway using
Databox as the underlying platform. The activity recogni-
tion layer receives global models (wд ), trains local models
(wk ), and conducts inference locally. Inferred activities are
used by health and activity monitoring applications.

and evaluated the processing time of activity recognition inference.
We then simulated a FL scenario wherein 100 clients collaboratively
train a global model, with the state-of-the-art training strategy [9]
of LSTM. We have evaluated the inference accuracy of the system
after each communication round. Our preliminary results show that
the processing time of local activity inference on an edge device is
feasible for low-cost device deployments. The proposed system can
also achieve a stable level of inference accuracy after a few rounds
of communication between clients and the cloud server.

2 SYSTEM DESIGN
The proposed system provides the following functionalities: (i)
aggregation and management of in-home sensory data to support
activity recognition; (ii) inferring people’s activities locally on edge
devices; and (iii) enabling different edge devices to collaboratively
train a DNN model without releasing their raw data to the cloud.
We now introduce how we achieve these goals through our design
considerations.

2.1 Databox as an edge gateway
We build our system on top of the Databox platform [15], which
provides functionalities for personal data management and access
control. It can be deployed on edge devices such as Raspberry Pi and
Intel NUC at people’s homes as an edge gateway to receive sensor
and IoT data, and aggregate these data for local applications such
as activity recognition. In Databox, collected data are organised as
data stores and can only be accessed through drivers, as shown in
the bottom layer in Fig. 1. The default access control mechanism
of Databox logs and manages operations of Databox Apps on data
stores. To simplify the diagram, we do not show the driver and
manager components of Databox in Fig. 1.

The reason for building our system on Databox is that the system
locally converts in-home sensory data (i.e., raw data) to activity

information, which can be used for health and activity monitoring.
However, third parties may develop these applications. Thus their
access to and operations on activity data, especially when request-
ing the activity data to leave people’s homes, should be managed.
Databox provides an efficient way to monitor and control local
applications’ behaviours.

2.2 Activity recognition at the edge
The key functionality of our system is to infer people’s activities
locally using collected data on Databox. Existing research [4] has
shown that edge devices are capable of performing inferences lo-
cally using trained DNN models, which can reduce application
latency. In addition, local inference does not need to send raw data
to the cloud, which alleviate a major privacy concern that is com-
monplace in traditional cloud-based deep-learning applications.

We build an activity recognition layer on top of the Databox
platform. It contains an LSTM network [12] and conducts two
tasks, which are local training and local inference on Databox. The
network has a sequence of LSTM cells, each of which has several
hidden states. An LSTM cell takes time-series data (e.g., a sequence
of sensor readings) as input and correspondingly outputs a series
of hidden states. Thus the output of the network depends on its
model parameters and input series. During the local training phase,
our system feeds a series of local sensor data into the network,
compares output states with actual activities (i.e., labelled data),
and tunes the parameters of the network to minimise the errors in
the output. The system can obtain labelled data by using publicly
accessible data or asking users to conduct daily activities from time
to time. For local inference, it receives a new LSTM network (i.e.,
the global model) from a cloud server. Through the data access
mechanism of Databox, it retrieves the collected data within a small
time window as current data and uses them as input to the global
model. It uses the output of the model as the current activities of
users and organises them as an activity data store, which can be
used by local health and activity monitoring applications such as
user reminders and emergency detection.

The activity recognition layer protects users’ privacy by keeping
the raw data locally for both the training and inference phases. It
only sends the trained local model to the cloud (see Sec. 2.3), and
the model can be further processed by tighter privacy guarantees
such as differential privacy before leaving Databox. The inferred
activities are also kept locally as a data store and used by local
applications. The default mechanism of Databox controls local
applications’ access to these activities.

2.3 Model training through federated learning
There are two major challenges of training DNN models locally on
an edge device. First, the training process needs typically to repeat
many iterations, i.e., epochs, in order to optimise the parameters
of a model and achieve high inference accuracy. Doing so on a
single client consumes many computational resources. Second, a
new client with insufficient local data may not be able to train an
accurate model. We use federated learning (FL) [14] to address these
issues and facilitate the training process in our system.

In the FL system, a cloud server communicates with clients and
helps them train a global model wд . As shown in Fig. 2, during
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Figure 2: Federated learning structure. Each client sends its
local model (wk ) to the cloud server. The cloud server gen-
erates a global model (wд ) from averaging the received local
models and sends it back to all the clients for local inference.

Input K : number of all clients; C: fraction of clients;
1: initialiseswд

0 at t = 0
2: foreach communication round t do
3: St ← randomly selected K ·C clients
4: foreach client k ∈ St do
5: wk

t+1 ← LocalTraininд(k,w
д
t )

6: end for
7: w

д
t+1 ←

∑
k ∈St

nk
n
wk
t+1

8: end for

Figure 3: FederatedAveraging (FedAvg) algorithm on the
cloud server. nk is the number of local samples of client k
and n is the number of the samples of all selected clients.

each communication round the server randomly selects a fraction
of clients (indexed by k) and sends the current wд to them. Each
selected client uses its local data to train the receivedwд through a
small number of epochs and produces a new local model wk . All
produced new local models are then sent back to the server. As the
new local models have different parameter values, the server uses
the FederatedAveraging (FedAvg) algorithm termed by McMahan
et al. [14] and all thewk to calculate a weighted average model as
the new wд for the next communication round. Fig. 3 shows the
pseudo-code of the cloud server part of the FedAvg algorithm.

By repeating rounds of communication between the cloud server
and clients, wд is continuously updated with contributions from
different clients. Each client conducts local training only when it
is selected, and the training process only takes a small number of
epochs. More importantly, the server only receives resulting models
instead of raw data from clients.

3 EVALUATION
We have evaluated our system in two steps. First, we evaluated
the processing time of local activity recognition by using a trained
LSTMmodel. We used a Raspberry Pi 4 Model B for the edge device.
We then evaluated the accuracy of the global model by simulating
the FL system with repeated rounds of communication. We have
used three activity recognition datasets related to household activity
and health monitoring in our evaluation.

Our preliminary results show that: (i) the processing time of
local inference on an edge device is acceptable; and (ii) the global
model achieves a sufficient level of inference accuracy after a few
rounds of communication between clients and the cloud server.

3.1 Datasets
The time-series activity datasets used in our evaluation include
the Opportunity (Opp) dataset [5], the Daphnet Freezing of Gait
(DG) dataset [2], and the PAMAP2 dataset [17]. The Opp dataset
contains kitchen activities collected from 4 participants. The DG
dataset contains incidents of freezing of gaits, which is an important
contributor to falls in patients with Parkinson’s Disease, collected
from 10 participants. The activities and incidents in both datasets
are short-term and non-repeated. The PAMAP2 dataset contains
long-term and repeated household and exercise activities collected
from 9 participants and is used to evaluate our system’s inference
accuracy on long-duration activities. We follow the same data pre-
processing procedure in work by Hammerla et al. [10] to make
training and testing datasets. Table 1 shows the number of input
features, number of output classes, and the sizes of training and
testing datasets generated from different raw datasets.

Table 1: Characteristics of the 3 activity datasets in our ex-
periments.

Dataset Activities Features Classes Training Testing

Opp Kitchen 79 18 651k 119k
DG Gait 9 3 792k 81k
PAMAP2 Household 52 12 473k 83k

& Exercise

In our simulated FL system, for each raw training dataset, we
generated several local training datasets and allocated them to
100 clients. The number of clients is more than the number of
participants in each dataset, which means that the clients’ data are
subsets of participants’ data. This allows us to simulate situations
where data are sparse and not continuously recorded. To allocatenk
samples to a client, we use two strategies to generate local training
datasets from raw training datasets.

IID local training datasets. In this strategy, we split a raw
training dataset into 100 divisions. The samples for each client
uniformly distribute among these divisions. In each division, we
randomly locate a small time window with the length of nk

100 and
retrieve the samples within the time window as the samples of
the division. Samples of all divisions are concatenated as the local
training dataset for a client. By this means, we can make sure
that the local training datasets of different clients have similar
distributions.
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Non-IID local training datasets.We assume that in real-world
FL, each client’s local training dataset could be skewed. In this
setting, we randomly locate a time window with a length of nk
among the entire raw training dataset and allocate all the samples
within the time window to a client. Thus, each client’s local training
dataset can only cover a continuous region of the raw training
dataset. We want to evaluate how this skewed distribution of local
training datasets affects the inference accuracy of the global model.

3.2 Setup
To evaluate the processing time of local inference, we train LSTM
models (1 LSTM cell, 256 hidden states, learning rate 0.01, 1 fully-
connected layer) using PyTorch on the entire training datasets.
We test the trained models locally on a Raspberry Pi 4 Model B,
which is a typical model of the edge device. We use a one-second
time window to sample the entire testing datasets and measure
the local inference time on each sampled subset. The reason of
using a one-second time window is to evaluate the processing
time within a unit time period. In practical conditions of activity
and health monitoring, the local inference happens continuously.
Table 2 shows the system specifications of the Raspberry Pi used in
our evaluation.

Table 2: System specs of our used Raspberry Pi 4 Model B.

CPU Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

RAM 4GB LPDDR4-3200 SDRAM

Storage SanDisk Ultra 32GB microSDHC Memory Card

OS Ubuntu Server 19.10

To evaluate the inference accuracy of the global model, we sim-
ulated a vanilla FL system. The cloud server starts with a global
LSTM model (same network structure as the one in local inference)
with randomised initial parameters. In each communication round,
the server randomly selects 10% of 100 clients and sends the global
model to them. Each selected client uses its local training data to
update the parameters of the global model through 2 local epochs.
For each epoch, we follow the LSTM training procedure proposed
by Guan and Plötz [9], which uses bagging (bootstrap aggregating)
strategies by randomising batch sizes and sequence lengths. The
client uses cross-entropy loss as the loss function and Adam op-
timisation during the training phase and generates a local model
with updated parameters. At the end of each round, all local models
are sent back to the server. The local models are used to generate
a new global model. We evaluate the inference accuracy (i.e., the
ratio of correctly inferred samples among all tested samples) of the
resulting global model against the whole test datasets. The com-
munication processes (100 rounds on Opp and DG, 200 rounds on
PAMAP2) are repeated until the inference accuracy reaches a stable
level. For each raw dataset, we run 50 replicates of simulations and
use the average value of the replicates as results.

We keep the network structure of the LSTM models and the
local training process simple (i.e., only 1 LSTM cell and 2 local
epochs). The reason is that we want to reduce the consumption of
computational resources on edge devices. We want to know how
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Figure 4: Inference time on a Raspberry Pi 4 Model B. Each
data point represents the processing time (ms) of the local
LSTM model to infer the activities of the samples within a
one-second time window (33 samples).

much FL can boost the training phase when both model complexity
(1 LSTM cell) and individual consumption (2 local epochs) are low.

3.3 Inference time
Fig. 4 shows the distributions of the processing time of local infer-
ence on samples within a one-second time window on different
datasets. As the sample rate of the datasets is 33Hz, each time win-
dow contains 33 samples. For all the three datasets, the average
inference time is lower than 70ms (Opp: 56 ± 4ms , DG: 59 ± 4ms ,
PAMAP2: 62 ± 5ms). Our results show that for one second of time-
series sensor readings, the overhead of local inference on them is
lower than 7%, which is acceptable. Although this evaluation does
not take the data transmission time into account and the dimen-
sionality is not as high as those in image or video-based activity
recognition, we believe that this preliminary result shows the po-
tential of local activity inference on edge devices.

3.4 Inference accuracy
We first look at the results with IID training data. Fig. 5 shows
the inference accuracy of our system during each communication
round on 3 datasets. In the early rounds of the simulation, the
initial accuracy depends on the evaluated dataset. As the rounds of
communication increase, the accuracy goes up and converges at
a stable level on all 3 datasets. The speed of the convergence also
differs in different datasets. For example, the initial accuracy on
Opp is close to its stable accuracy and converges gradually. The
initial accuracy on PAMAP2 is much lower than its stable accuracy
but converges to the stable level after about 25 rounds. The initial
accuracy on DG is almost the same as its stable accuracy. As DG
has much fewer activity classes (3) than PAMAP2 (12) and Opp
(18), we speculate that the number of activity classes may affect the
speed of convergence in our system.
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Figure 5: Inference accuracy on different datasets (100 communication rounds on Opp and DG, 200 communication rounds on
PAMAP2) with IID and Non-IID data. Accuracy with IID data is higher and converges faster than that with Non-IID data.

The inference accuracy with Non-IID data shows similar trends
as that with IID data does but has a few differences. As expected,
the initial accuracy on Non-IID data is lower than that with IID
data. This is because that the Non-IID data of each client only
covers a small continuous region of the training sets. Thus the
models trained on these local data are skewed. As the rounds of
communication increase, in some datasets, this kind of skewness is
averaged by the FedAvg algorithm. For example, on the Opp dataset,
the Non-IID inference accuracy goes up rapidly and becomes close
to the IID inference accuracy. On the DG dataset, the Non-IID
accuracy reaches a stable level in the very beginning, but has more
fluctuation and is constantly lower than the IID accuracy. The
accuracy with Non-IID data in PAMAP2 is also steadily lower than
that with IID data and converges more slowly.

Our experimental results demonstrate promising inference accu-
racy with IID data, which is an ideal situation of our system. When
the local data are not skewed, the accuracy of the trained global
model can converge to a stable level within a few communication
rounds. The accuracy of datasets that have fewer activity classes
may converge faster. The accuracy with Non-IID data is affected by
the skewed local data and is lower than that with IID data in gen-
eral. This can be considered as a non-ideal situation of our system,
wherein each client only has data for specific times of the day or
specific types of activity. However, the difference between the accu-
racies with IID and Non-IID data depends on the data, i.e., activities,
which would be further investigated in our future research.

4 DISCUSSION
Our system aims to provide health and activity monitoring based on
local inference, and meanwhile protect users’ privacy by keeping
their raw data stored on the Databox. The only data that are sent
to the cloud are locally trained models. By this means, our system
provides a direct privacy guarantee against an “honest but curious”
cloud server, which follows the service protocol between it and its
users but may store and reuse the received data. Adversaries with
more advanced abilities, however, may still be able to breach users’
privacy through analysing the released models. For example, mem-
bership inference attacks [21] and model inversion attacks [11] may
reveal information in the original training datasets. These threats

are introduced by malicious users, which were not taken into ac-
count in this paper, and may affect the expected privacy level of our
system. To address these possible issues, privacy-enhancing tech-
nologies such as differentially private deep learning [1], either on
the clients or on the cloud, are needed in order to provide a higher
level of privacy. Inevitably, it may cause additional expense on util-
ity (e.g., inference accuracy) and cost (e.g., computational resources).
The trade-offs between them need to be further investigated.

Since federated learning is an open structure, it is necessary to
control the quality of the contributions from clients. The quality
of data on different clients may be different due to sensors’ con-
nectivity and users’ daily activity patterns. As a consequence, the
contributions from their local training processes are unlikely the
same. In order to promote the contributions from clients that have
more useful data than others, a reputation system or a trust-based
system can be introduced. Such a system can prioritise the contribu-
tions from a subset of users when calculating the global model and
make the inference accuracy converge faster. We plan to explore
and evaluate these systems in the future.

5 RELATEDWORK
Edge computing has facilitated many novel deep learning appli-
cations at the edge, such as computer vision, natural language
processing, and IoT based human activity recognition. For instance,
one application is fall detection from accelerometer readings [3, 16],
which is useful in healthcare monitoring. Uddin [22] also proposes
a smart healthcare system at the edge using electrocardiography
(ECG), magnetometer, accelerometer, and gyroscope readings to
recognise human activities. The experimental results show that
a Recurrent Neural Network (RNN) trained on these data can de-
tect activities with high accuracy at the edge. Apart from sensor
readings, video data can also be used for activity recognition. For
example, the EdgeEye system proposed by Liu et al. [13] can pro-
vide API to applications in the local network for real-time video
analytics. To help realise these activity recognition systems at the
edge, Zhang et al. [24] propose a general framework, including ar-
chitecture, algorithms, and implementation. These existing systems
and frameworks, however, rely on a cloud server that performs both
the training and inference phases on users’ raw data. In this paper,
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we focus on addressing the privacy issues, which is an important
aspect of activity recognition at the edge, with the help of local
activity inference on edge devices and federated learning.

Edge devices are one of the solutions that can control the disclo-
sure of local data to the cloud [23]. Platforms such as Databox [15]
can be deployed on edge devices to collect and manage sensor and
IoT data, on top of which we can implement activity recognition
locally. A cluster of such devices can cooperate in the training phase
by sharing models instead of raw data with each other. For exam-
ple, Shokri and Shmatikov [20] propose a distributed system that
allows multiple parties to selectively send the gradients of their
local models to the cloud, thereby jointly learning a model together
without disclosing the raw data. Similarly, the federate learning
paradigm [14] allows multiple parties to send their models to a
cloud server that uses the FedAvg algorithm to generate a global
model, which can be used by all the parties. It not only protects the
privacy of individuals but also boosts the training process.

6 CONCLUSIONS
Health and activity monitoring using sensor and IoT data can
greatly improve people’s living conditions in their daily lives. How-
ever, privacy is one of the major issues in traditional systems where
all the data are sent to a cloud server. In this paper, we propose
a system that utilises the recent progress of edge computing and
federated learning. Our proposed system uses the Databox platform
to collect and manage sensor and IoT data and uses these data to
infer activities locally on an edge device, based on which health and
activity monitoring can be realised. It uses a cloud server to coordi-
nate different devices to jointly train a global LSTM model without
releasing their raw data, which provides a direct protection on
users’ privacy. Our experimental results show that the processing
time of local inference on an edge device is acceptable. Meanwhile,
the inference accuracy of our system can converge to a sufficient
and stable level after a few rounds of communication between the
clients and the server. As an ongoing work, we plan to introduce
formal privacy enhancing technologies such as differential privacy
into our system and evaluate the trade-offs between utility, pri-
vacy, and cost. We also plan to use reputation-based or trust-based
mechanisms to optimise the contributions from individual devices,
thereby increasing the inference accuracy of the system.
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