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ABSTRACT

The issue of ageing population is gaining significant atten-
tion across the world, while the caregivers’ psychological
burden caused by a variety of geriatric symptoms is often
overlooked. Efficient collaboration between the elderly and
caregivers has great potential to relieve the caregivers’ psy-
chological burden and improve the caregiving quality. For in-
stance, activity prediction can provide a promising approach
to cultivate this efficient collaboration. Given the ability to
predict the elderly patients’ activity and its timing, caregivers
can provide timely and appropriate care, which not only can
relieve caregiving stress for professional or family caregivers,
but also can reduce the unwanted conflicts between both
parties. In this paper, we train an activity predictor by in-
tegrating the activity temporal information into the Long
Short-Term Memory (LSTM) networks. The approach leads
to significant improvements in the prediction accuracy both
in the next activity and its precise occurrence time.
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1 INTRODUCTION

The topic of ageing population has emerged as one of the
most formidable socioeconomic challenges faced by both
developed and developing countries. The enormous quantity
of elderly population increases the economic burden for the
cosmopolitan well-being system, which also poses a critical
challenge to long-term healthcare. In Europe, the number
of people aged 65 and over is expected to grow to 28% of
the population in 2060 [2]. The demographics of the elderly
group afflicted by Alzheimer disease and related dementia is
proportional to the growing trend of the ageing population.
By 2030, $2 trillion dollars will be spent each year globally
for the well-being of dementia group [6].

Integrating the assistive technologies into the smart home
paradigm [4] is regarded as a potential trend for setting up
care for different elderly groups, especially for the candidates
with dementia, and other mild cognitively or functionally
impaired elders. This approach can reduce time and cost ex-
penditures of the long-term healthcare, while improving the
quality of life for the target population and their caregivers.
However, in current research, caregiver distress correlated
with multifarious geriatric symptoms is overlooked, where
there is a significant gap in relieving the psychological bur-
den for caregivers [4]. For instance, the dementia group has
a series of symptoms including but not limited to agitation,
irritability, depression, delusion and etc.. Those symptoms
torture and distress their formal or informal caregivers [4].
Caregiving with depression and frustration is detrimental
to the wellness of both parties, which might escalate the
tension and intensify potential conflicts between them [6].

One promising way to mitigate these negative effects is
to implement efficient non-verbal communication, or col-
laboration, between the elderly group and their caregivers.
Research by Koumakis et al. has emphasized the demand
for cultivating an appropriate collaboration between those
suffering from mild dementia and their caregivers [4].

The ability to model the elderly behaviors and predict
their next activity is extremely valuable in cultivating this
particular collaboration and smoothing their communication
with each other. However, modelling human behaviors and
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Figure 1: Overview of the proposed prediction architecture.

predicting human next activity are highly challenging due to
the complexity of human behaviors. Though human behav-
iors and activities are hard to model, they can be represented
by a time series of periodic, repetitive, and interdependent
sequence data, as human is a creature of habit. These proper-
ties allow the sequence of human activity to be a predictable
sequence. Especially for the elderly group and the candi-
dates of dementia, their lives are much more monotonous
and repetitive.

In our proposed framework, by leveraging the indoor ac-
tivity recognizer [3], an elder’s activity can be recognized,
recorded and further analyzed. The results of such activity
recognition are then fed into the activity predictor, which
can predict the next activity or intention of the group that is
taken care of. The persuasive prediction itself can relive the
tension resulted in discrete wills between two groups. For
the long-term healthcare, successfully predicting the elder’s
next activity or intention can call caregivers’ attention to
helping them when needed, which not only can relive the
caregiving burden and improve efficiency, but also improve
the quality of life for both groups.

There is no doubt that activity prediction plays an im-
portant role in this particular communication between the
elderly and their caregivers, which communication empha-
sizes the prediction performance. Hence, this work trains a
more persuasive activity predictor by using the deep contex-
tualized word representation (ELMo) [5] and integrating the
temporal information of the data into the proposed LSTM
framework. Our results highlight that an appropriate utility
of the temporal information can have better prediction accu-
racy. While better predictions in our framework allow the
caregivers to have more personal time and relive their psy-
chological burden. With persuasive predictions, both groups’
well-being are taken into consideration in their daily life.

2 PROPOSED ARCHITECTURE

Unlike some previous healthcare platforms driven by rule-
based reminders, the proposed architecture in this work is
sensor data-driven, autonomous and proactive. The overview
of proposed prediction architecture is shown in Figure 1. Data
is emanated from the ubiquitous sensors, and further labelled
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Figure 2: Dataset description. Each line in the dataset at least
contains ’Date’, Timestamp’ and Sensor ID’.

as the sequences of activities. These labels are then repre-
sented as ELMo vectors [5] and fed into the LSTM model to
train the activity predictor. At the same time, each activity
class has its own LSTM-based time predictor. When the pre-
diction of the next activity is generated, the corresponding
time predictor will be triggered and predict the precise oc-
currence period, as shown in Figure 1. With this valuable
information, caregivers can estimate when is the right time
to provide appropriate help to the elderly.

2.1 Dataset Description

Our models use the sensor data instead of cutting-edge wire-
less signal data, as existing wireless signal-based activity
recognition methods have lower accuracy and can only rec-
ognize one or several activities. However, the quality of
prediction depends on the diversity of the recognized ac-
tivities. We compare three widely-used datasets in activity
recognition literature, that were published by Cook and Kr-
ishnan [3], Tapia et al. [7], and Van Kasteren et al. [8], re-
spectively. All datasets chosen to validate our assumptions
are single-person apartment monitoring data that emanated
from multiple sensors. Each line of data should at least con-
tain "date", "timestamp", "sensor ID", and "activity label", as
shown in Figure 2. Formally, one timestamp ¢; recorded as a
result of one sensor trigger by resident, one sensor trigger is
mapped as one action a;. Activity recognizer will generate
the sequence of activities by analyzing the sensor data.

The prediction task can be formulated as a variant of the
sequence generation task: given a sequence of resident’s past
actions {ay, az, .. ., a;} or past activities {A;, Az,...,A;} in
concerted with a sequence of timestamps {t1, 2, . . ., ¢; } until
time ¢;, to predict the next action a;, or next activity A;
and their occurring time t;,.

2.2 ELMo Representation

The prominent word representation in deep learning area
is word embedding, and one of the most frequently-used
word embeddings is Word2Vec embedding. However, the
Word2Vec embedding and other similar word embeddings
are now losing their dominance in Natural Language Pro-
cessing (NLP) area due to the rise in availability of novel
pre-trained language models. ELMo [5], the abbreviation
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of Embedding from Language Models, is a deep contextual-
ized word representation which has shown the potential to
improve the state-of-the-art performance of existing NLP
tasks. Unlike other word vectors, the ELMo vector can be
learned by a deep bidirectional language model pre-trained
on a large text corpus [5]. Hence, ELMo representation can
better model both semantic complexity and context-based
polysemy. In our proposed model (Figure 1), we use ELMo
representation to define each action’s embedding matrix, a
128-dimension vector, in the embedding layer of the LSTM
model.

2.3 Long Short-Term Memory Network

Long Short-Term Memory units, or LSTMs, proposed by Hochre-
iter and Schmidhuber in 1997, is a prominent variant of re-
current neural networks (RNN). LSTM has been shown to
exhibit brilliant performance on modelling entire sequences
of data, especially for linking remote causes and effects in
time series data. LSTM can efficiently handle the difficulty of
learning long-term dependencies with the gradient descent
in a standard RNN. The capability of LSTM on remote de-
pendencies empowers it to be one of the dominant networks
in time-series-data analysis and sequence generation.

In this work, the LSTM network is well-suited to our sen-
sor data, which is sparse, time-varying and interdependent.
In order to verify our hypothesis that the LSTM models take
into account of the temporal information of sensor data will
have better prediction performance than the one without this
information, we have two LSTM models in comparison. The
first model has only one LSTM layer for action embedding,
while the other one has an extra LSTM layer to integrate
time-stamps. These two models are referred to One-LSTM
and Temporal-LSTM, respectively.

3 EVALUATION AND RESULTS

Three different experiments are set up to evaluate the perfor-
mance of the proposed architectures with integrated tempo-
ral information. These architectures’ performance are com-
pared with a baseline, which used Word2Vec embedding for
action representation and LSTM-based network for human
behavior modelling [1]. Prediction accuracy is one of the
most important features for assessing performance of the
predictive model, thereby we use the prediction accuracy
as the evaluation metric, from one-attempt to five-attempt,
which would keep horizontal comparison with the baseline.

3.1

Different lengths of the context size exert an effect on pre-
diction performance of a recurrent model [3]. By changing
the length of the input action (context size) from 1 to 200,
we observe that the length of input action has a high impact
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Figure 3: Prediction accuracy changes with the length of in-
put action (context size) in two LSTM models. Grey bins il-
lustrate the optimal area of each model.

on the accuracy in our two LSTM models, as shown in Fig-
ure 3. Note that the optimal context size of the first model is
situated at the interval [40, 90], while the second model is at
the interval [70, 120].

Compared with One-LSTM model, the Temporal-LSTM
model has better performance from all 1-attempt to 5-attempt
predictions, especially for 1-attempt and 5-attempt, where
the accuracy is higher than 0.5 and 0.9, respectively. The
comparison between these two models also illustrates that
even with the same dataset, different architectures would
have different optimal values. When considering the tem-
poral information, sufficient context improves performance
while insufficient context decreases the performance.

3.2 ELMo Embedding or Word2Vec Embedding

In the baseline experiment, Word2Vec embedding represen-
tation has been used in the embedding layer of LSTM to
provide better performance than one-hot vectors[1]. In our
proposed models, ELMo representation is used to define each
action’s embedding matrix. The pre-trained language model
generates a 128-dimension vector for each action. Then these
vectors are fed into the embedding layer of our LSTM models.

In this contrast experiment, the ELMo embedding-based
models are compared with the Word2Vec embedding-based
models, as shown in Figure 4. The results illustrate that
the ELMo representation can improve the prediction accu-
racy, where the increment is 5.93% averagely for the One-
LSTM(1LSTM), and 8.57% for the Temporal-LSTM(2LSTM).
With ELMo representation, the integration of time infor-
mation (2LSTM) can also improve the performance, which
demonstrates that ELMo representation has more potential
to illustrate the contextual-temporal dynamics in activity
prediction.
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Figure 4: Improvement of ELMo representation when com-
pared to Word2Vec embedding. The 2LSTM with ELMo rep-
resentation outperforms the 1LSTM.

3.3 One-LSTM or Temporal-LSTM

In the baseline study[1], Almeida and Azkune evaluated three
different fusion strategies on LSTM network, and found that
all fusion strategies that took into account of timestamps
{t1,t2,...,t;} were detrimental to the results. Their data is
shown in the w2v line in the Table 1, where Temporal-LSTM
(2LSTM) has worse performance.

On the contrary, in our proposed LSTM models, the results
in Table 1 admit that the time layer can improve the accuracy
of prediction, especially for the increments at 1-attempt(top1)
and 5-attempt(top5) situations. In general, the Temporal-
LSTM (2LSTM) has better prediction accuracy than One-
LSTM (1LSTM). We demonstrate that if temporal information
can be used in an appropriate way, the model can have better
prediction results, especially for a small dataset.

4 DISCUSSIONS

The valuable information provided by activity prediction
can build an efficient collaboration between the elderly and
caregivers, which is a cornerstone of the better quality of
life for both groups. In addition to effective communication
between them, in the long-term healthcare, successfully pre-
dicting an elder’s intention or next activity can provide a
series of activity-aware services, including penalization of
the intelligent environment, prompting-based intervention,
anomaly detection, and etc. There is still a large potential
improvement in prediction accuracy. A truly persuasive pre-
diction can undoubtedly improve the elder’s quality of life
and well-being, so as their caregivers.

In real-time prediction settings, a well-trained activities
recognizer that recognizes the activities as inputs for the pre-
dictor. At the same time, the recognizer would also provide a
baseline for the predictor to verify each prediction. However,
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Table 1: Prediction accuracy of two ELMo-embedded LSTM
models when context size is 50 and 70, respectively, are com-
pared with the baseline (w2v).

top1 top2 top3 top4 top5

WV 1LSTM 0.4744 0.6282 0.7179 0.7905 0.8589
2LSTM  0.4487 0.6239 0.7094 0.7692 0.8076

50 1LSTM  0.4844 0.6933 0.7822 0.84 0.8577
2LSTM 0.5112 0.6712 0.7734 0.84 0.8712

70 1LSTM  0.5027 0.7014 0.8145 0.8507 0.8688

2LSTM 0.5249 0.6787 0.7828 0.8733 0.8869

there are three challenges: firstly, current indoor activity
recognizer utilized in predictor, depends mostly on ambi-
ent sensors which cannot recognize micro actions and real-
ize continuous tracking; secondly, activity predictor (LSTM-
based, which has better performance than other baselines,
like Markov Model) still has unexpected low accuracy and
low time sensitivity; thirdly, the multi-person scenario is
always challenging and need feasible solutions.
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