UCIL

UNIVERSITY COLLEGE LONDON

Department of Electronics and Electrical Engineering

RDS Encoder

R-D-S

WAL D BaTa §FruFfas

Hamed Haddadi

Supervisor: Dr. Paul Brennan

Final Report

March 2003

Abstract

Radio Data Systems was development started 20 years ago in the European Broadcast Union,
EBU. The developers aimed to ease the process of tuning in to a station, especially as the
number of broadcasters was increasing and use of alternative frequencies to avoid interference
would make it difficult to keep tuned to a certain station. The use of RDS would overcome
this problem and will also enable the transmission of the Programme Service name (PS),
traffic information and other useful features which will make the FM receivers more user-
friendly.

University College London has got its own radio station, RARE FM, which requires an RDS
encoder to enable them to transmit the name of the station. Commercial RDS encoders are
relatively expensive and complex and they need a dedicated PC and network connection to
enable the other features such as traffic information, which is not required by Rare FM. The
purpose of this project is to build an isolated RDS encoder which will not need a PC and is
simple enough to be used by a non-technical person in the station.

Some work has already been done last year to develop the encoder using analogue techniques.
However any changes to the station name will require modification of components and
switches and valid data has not been prepared for encoding and modulation alongside the FM
carrier. The technique pursued in this project is using a micro-controller to control the data
and bit-stream conversion and validations. This makes the system easier to operate and make
it easier to change the settings of the transmitted data-stream if needed in future.

This report contains the background research and knowledge taken from the RDS standard.
Objectives of the project and the approaches are also discussed within the appropriate section.
The work done and the achievements of the project are also explained, as well as the time and
budget planning and goals.

One of the major obstacles met in previous projects has been providing data and transmitting
the correct information at the right time. In this project the data processing part has been
investigated and planned first. This made sure that the new tasks are done before going
through the development and improvement of previous attempts to make an RDS Encoder.

Acknowledgements:

The author would like to acknowledge the work done By Timothy Shaw and Richard Koch as
their project in development of the RDS encoder and appreciate their valuable advice and
ideas given prior to start of the project. Many thanks are also forwarded to Dr. Paul Brennan
of the department for his help and supervision from the start of the research into the project
and Gerald McBrearty and Andrew Moss of the EE laboratory for their valuable advice and
support during the software development and hardware realisation of the project.

RDS Encoder Project Hamed Haddadi 2

CONTENTS

1. An introduction to RDS

2. Physical Layer of RDS system
2.1. Subcarrier frequency
2.2. Subcarrier phase
2.3. Subcarrier level
2.4. Method of modulation
2.5. Clock frequency and data rate
2.6. Differential coding
2.7. Data channel spectrum shaping

3. Base-band coding of the RDS system
3.1. Base-band coding structure
3.2. Order of bit transmission
3.3. Error protection
3.4. Message format

4. Project objectives and strategies
4.1. Providing frame data
4.2. Data input method for PS
4.3. Data display and user interface
4.4 Data processing and input/output control
4.5. CRC calculation
4.6 Bit-stream output

5. Software development tools
5.1. MPLAB Integrated Development Environment
5.2. Proteus Virtual Circuit Modelling
5.3. Orcad PSpice
5.4. Easy PC

6. RDS encoder block circuits
6.1. Radio data message source
6.2. Differential encoder
6.3. Bi-phase symbol generator
6.4. Shaping Filter
6.5. 57 KHz signal generator
6.6. Divide-by-24 counter
6.7. Divide-by-2 counter
6.8. Modulation
6.9 Power supply

7. Conclusions and future work
7.1 Objectives and achievements
7.2 Future work and improvements
8. Appendix
9. References
10. Component datasheets

RDS Encoder Project Hamed Haddadi

Page

O 00 0 0 0 AN AN D

12
12
13
14

16
16
17
18
20
22
24

26
26
26
27
27

28
28
29
29
31
31
32
34
34
36

37
37
37
38
63
64

List of Figure and Captions

Page
Figure 1: FM spectrum 6
Figure 2: Block diagram of RDS encoder at the transmitter 7
Figure 3: Block diagram of a typical RDS receiver 7
Figure 4: Amplitude response of specified transmitter/ receiver data-shaping filter 10
Figure 5: Amplitude response of combined transmitter/ receiver data-shaping filter 10
Figure 6: Spectrum of bi-phase coded radio-data signals 11
Figure 7: Time-function of a single bi-phase symbol 11
Figure 8: 57 kHz radio-data signals 11
Figure 9: Structure of the base-band coding 12
Figure 10: Message format and addressing 12
Figure 11: Basic tuning and switching information — Type 0B group 14
Figure 12: PI structure 16
Figure 13: Data input via push-button switches 17
Figure 14: Pin-out diagram of PIC16F877 micro-processor 21
Figure 15: Clocking the PIC 21
Figure 16: RDS encoder data input and user interface 22
Figure 17: CRC generator circuit 22
Figure 18: Modulo2 division 23
Figure 19: Modulo2 division using one register 23
Figure 20: MPLAB IDE software 26
Figure 21: Proteus VSM software interface 27
Figure 22: Data message source connected on breadboard 28
Figure 23: PCB design for the data message source block 28
Figure 24: Differential encoder 29
Figure 25: PIC16C622 for bi-phase symbol generation 30
Figure 26: Inverting amplifier for negative pulses 30
Figure 27: Shaping filter 31
Figure 28: Divide-by-3 waveform 31
Figure 29: PLL and divide-by-3 circuit 32
Figure 30: PLL waveform 32
Figure 31: Divide-by-24 counter 33
Figure 32: Divide-by-24 waveform 33
Figure 33: PLL and divide-by-24 circuits 33
Figure 34: Divide-by-2 counter 34
Figure 35: Divide-by-2 waveform 34
Figure 36: Square-to-sinusoidal wave converter 34
Figure 37: Square-to-sinusoidal waveform 35
Figure 38: Modulator 35
Figure 39: Modulator waveform 35
Figure 40: Modulator circuit 36
Figure 41: Positive voltage regulator 36
Figure 42: Voltage inverter 36

RDS Encoder Project Hamed Haddadi

1. An introduction to RDS

The use of more frequencies for the radio programmes in the VHF/FM range makes it
difficult for an in-car radio to remain tuned to the desired programme as the stations have to
constantly change frequencies in different regions to avoid interference. RDS employ an FM
subcarrier to transmit steady stream traffic information and the station name. This is a real
advantage over conventional radio systems as the sales of FM in-car radio systems were not
growing at the desired rate. The RDS system allows the station to transmit its Programme
Service Name (PS), an eight-character sequence identifying the station. This makes tuning to
a station by frequency redundant. Another important addition is the PI code. This code allows
receivers to automatically switch to the best available frequency for a particular station,
especially useful on long car journeys where frequencies for the same station change to avoid
interference patterns.

Following a long period of systems development in the 1970s and early 1980s, RDS is now
implemented all over Western Europe, and in several other regions of the world. This was
after the improvement of the in-car entertainment system developments. RDS had major
advantages for the traveller. RDS can provide traffic information and filter out the
unnecessary information when travelling in a specific route by recognizing the location codes.
Nowadays RDS is implemented in most FM radios and virtually all in-car radio systems.

Even though the university radio station does not intend to transmit any traffic or news
announcements, it still is an advantage if they can employ an RDS encoder to transmit the
station name. Commercial RDS encoders are expensive and require a dedicated PC to operate
them. The addition of a PC will make the system complicated for non-technical users and also
the station’s budget does not allow for such purchases. However it is possible to build an RDS
encoder by using simple components and a microprocessor.

Some work has already been done to develop and RDS encoder. The knowledge gained from
the previous students will be build upon of to make a functional unit within this project. The
programmes for the microprocessor, provisionally PIC16F877, will be written and compiled
using the MPLAB software and the circuit simulations will be done using the Proteus Virtual
System Modelling software.

This report contains a brief review of the RDS standard, which includes the physical layer
(hardware) and the data-link layer and message format (software) part of the encoder system.
After the review of the theory, the software format, which has been already implemented, has
been discussed. As there are various different comparisons made within the text between the
different strategies and their implementation advantages and disadvantages, the
implementation of the chosen strategy for each specific task is explained immediately after
the technical discussion part. A brief description of the intended hardware layout, the project
timescale and budget planning are also included in the discussions section.

RDS Encoder Project Hamed Haddadi 5

2. Physical layer of RDS system

The RBDS standard, April 1998 was consulted to produce the following technical details of
and RDS signal. RBDS standard is the American version of RDS and it is exactly similar in
terms of operation and it was used as it is freely available on the web. The Radio Data System
is intended for application to VHF/FM sound broadcasts in the range 87.5 to 108.0 MHz
which may carry either stereophonic (pilot tone) or monophonic programs. The main
objectives of RDS are to enable improved functionality for FM receivers and to make them
more user friendly by using features such as Programme Identification (PI), Programme
Service (PS) display and where applicable, automatic tuning for portable and in particular, car
radios.

2.1 Subcarrier Frequency

During stereo broadcasts, the subcarrier will be locked to the third harmonic of the 19 kHz
pilot-tone. The tolerance on the frequency of the 19 kHz pilot tone is £2Hz, therefore the
tolerance on the frequency of the subcarrier during stereo broadcast will be £ 6 Hz.

During monophonic broadcasts the frequency of the subcarrier will be 57 kHz 6 Hz.

2.2 Subcarrier phase

During stereo broadcasts the subcarrier will be locked either in phase or in quadrature to the
third harmonic of the 19 kHz pilot tone. The tolerance on this phase must be within £10°,
measured at the modulation input to the FM transmitter. Figure 1 shows the FM signal.

100

80

60
Main channel

mono signal
(left + right)

7

1
Sub-channel
difference signal //
(left -Irightl

40

Modulation (%)

20

Pilot tone Suppressed RDS sub-carrier
19 kHz sub-carrier 57 kHz + 2.5 kHz
38 kHz

Figure 1: FM spectrum

Figures 2 and 3 represent the block diagrams of the transmitter and receiver.

RDS Encoder Project Hamed Haddadi 6

1187.5 Hx bit-rate clock

oscilloror

2375 Wx

Figure 2: Block diagram of RDS encoder at the transmitter

Myltiplex sigas! input
(trom VMF 'Fil demoduiator)

Sterec decoder

T] with de-emphesis

57 khz | 2.4 kHz
|

57 kHz
subcarrier
recovery

recovery

Figure 3: Block diagram of a typical RDS receiver

RDS Encoder Project

Hamed Haddadi 7

2.3 Subcarrier level

The deviation range of the FM carrier due to the un-modulated subcarrier is from +£1.0 kHz to
+ 7.5 kHz. The recommended best compromise is = 2.0 kHz. The decoder/demodulator
should also operate properly when the deviation of the subcarrier is varied within these limits
during periods not less than 10ms. The maximum permitted deviation due to the composite
multiplex signal is + 75 kHz.

2.4 Method of modulation

The subcarrier is amplitude-modulated by the shaped and bi-phase coded signal. The
subcarrier is suppressed. This method of modulation may alternatively be thought of as a form
of two-phase phase shift keying (PSK) with a phase deviation of + 90°.

2.5 Clock Frequency and Data Rate

The basic clock frequency is obtained by dividing the transmitted subcarrier frequency by 48.
The basic data rate of the system is therefore 1187.5 bit/s = 0.125 bit/s.

2.6 Differential Coding

The source data at the transmitter are differentially encoded using table 1:

Previous output (at time t;;) | New input (at t;) New Output (at time t;)
0 0 0
0 1 1
1 0 1
1 1 0

Table 1: Differential encoding

Where t; is some arbitrary time and t;; is the time one message-data clock period earlier, and
where the message-data-clock rate is equal to 1187.5 Hz.

Thus when the input level is 0, the output remains unchanged from the previous output bit,
and when an input 1 occurs, the new output bit is the complement of the previous output bit.
In the receiver, the data may be decoded by the inverse process, as shown in table 2.

RDS Encoder Project Hamed Haddadi 8

Previous input (at time t;-1) New input (at t;) New Output (at time t;)
0 0 0
0 1 1
1 0 1
1 1 0

Table 2: Differential decoding

The data is thus correctly decoded whether or not the demodulated data signal in inverted.

2.7 Data Channel Spectrum Shaping

The power of the data signal at and close to the 57 kHz subcarrier is minimised by coding
each source data bit as a bi-phase symbol.

This is done to avoid data-modulated cross talk in phase locked loop (PLL) stereo decoders,
and to achieve compatibility with the ARI system. The principle of the process of generation
was shown in Fig 2. In concept each source bit gives rise an odd impulse pair, e(t), such that
logic level 1 at source gives:

e(t) = o(t) -0 (t-t,/2)
And logic 0 at source gives:
e(t) = 8(t) +d (t-ty/2)

These pairs are then shaped by a filter H.(f), to give the required band limited spectrum

where:

i
cos—- 0<f<2/t,
Hr(f) =
0 f>2/t,
1
tg=—— s
1187.5

The data-spectrum shaping filtering has been split equally between the transmitter and the
receiver (to give optimum performance in the presence of noise) so that, ideally, the data
filtering at the receiver should be identical to that of the transmitter, i.e. as given above. The
overall data-channel spectrum shaping H,(f) would then be 100% cosine roll-off.

The specified transmitter and receiver low-pass filter responses, as defined in previous
equations, and the overall data-channel spectrum shaping is shown in figure 5.

The spectrum of the transmitted bi-phase coded radio-data signal is shown in figure 6 and the
time-function of a single bi-phase symbol (as transmitted) in figure 7.

RDS Encoder Project Hamed Haddadi 9

The 57 kHz radio-data signal waveform at the output of the radio-data source equipment may
be seen in the photograph of figure 7.

5

8

Relutive amplitude, H (1)

g

o | 480 0 1440 1920 2400 M
Fragwaacy

Figure 4: Amplitude response of the specified transmitter or receiver data-shaping filter

g8

Relalive amplitudw, M1}
s

il

a2

a 4BD a0 a4l ' W0 ZIIDI:I Hz
Fraquancy

Figure 5: Amplitude response of the combined transmitter and receiver data-shaping filters

RDS Encoder Project Hamed Haddadi 10

Relatdve amplitude

- 241 00 <740 0 &l 1200 1400 H
Modulating lequency

Figure 6: Spectrum of bi-phase coded radio-data signals

Symbol generated when the

&
g -
119 Fli datm bit 18 a logie 1
o Fi LY
E I .
;J_ A " === Symbol generated when the
=l 7 W dats bit is a logic O
o8 R
L. "\
I'l., b |
T
— 7)
= o ¥} . —
== - i o ; A 5 e
3 -ty 5 3 i iT 1 3 3. 14
4 N P 4 Time

-
R
A
.
|1+++E_++
,-f'}-;
\‘HH

=
{

1 J
T I

Caw date clock period 1 . ! seconds
T EL]

Figure 7: Time-function of a single bi-phase symbol

&« 2Dk -

Q

Exsmple of main

W Carrler devietion

o

r
-
-
W
|

]

|- . —_—
e biphass s pmboal -
one dete il period =

;= 17 b meconds

Figure 8: 57 kHz radio-data signals

RDS Encoder Project Hamed Haddadi

3. Base-band coding of the RDS system

3.1 Base-band coding structure

Figure 9 shows the structure of the baseband coding. The largest element in the structure is
called a “group” of 104 bits each. Each group comprises 4 blocks of 26 bits each. Each block
comprises an information word and a checkword. Each information word comprises 16 bits.
Each checkword comprises 10 bits.

_ Group = 4 blocks = 104 bits

[Bkt | Block2z | Blockd | Block4

__ Biock = 28 bils

Information ward Checkword + offset word

Infermation word = 16 bils j Checkword = 10 bits

—_-—— — - —

 Fia J.
PR R EREEEEEEEE.

Figure 9: Structure of the baseband coding

3.2 Order of bit transmission

All information words and checkwords have their most significant bit (m.s.b) transmitted first
(see figure 10). Thus the last bit transmitted in a binary number or address has weight 2°.

The data transmission is fully synchronous and there are no gaps between the groups or
blocks.

I he: v =104, DY B4 IER
|
| Block1 Block 2 Block 3 Block 4
¥ Fu_r_ﬂl!mnanmdhrlofgmw B, TP Laﬂhansnﬂtﬂdbﬂul‘urq&]p i
|t
Checloward 1 el Checkwond Chackwird Checkword
Pl code * e | || PTY | * - - =)
affset & (pooe| | | | oifset B oifset Cor T oifset D
LELLLLRLLOIRLLY L Lol INERNRNNENRNNEN] LLLEL it aliell
— 71N o —
ke ¥ L "'--.____. Oifzei © = varsion A
Most signifre b~ Loas! signifiant bt ¢ K — Offsal £ = veveon B
| o 7
I Ll Trathc 1 1 1
I [[I | 1 1
AS : _,\'.\2 v A ! Au B, m PT, ! PTy « PT, ' PT, ' PT,
1 I 1 1] '
4 Bl group fype code 0= version &

1 = varsion B

Figure 10: Message format and addressing

Information words and their use are explained in section 4, message format.

RDS Encoder Project Hamed Haddadi 12

3.3 Error protection

Each transmitted 26-bit block contains a 10-bit checkword which is primarily intended to
enable the receiver/decoder to detect and correct errors which occur in transmission. This
checkword (i.e. ¢’y, C’g ... ¢’ in figure 9) is the sum (modulo 2) of:

a) the reminder after multiplication by x'° and then division (modulo 2) by the
generator polynomial g(x), of the 16-bit information word),
b) a 10-bit binary string d(x), called the 2offset word2,

Where the generator polynomial, g(x) is given by:
g(x)=x1°+x8+x7+x5+x4+x3+ 1
The offset value, d(x), which is different for each block within a group is given in table 3.

Binary Value
Offset Word

Dy, Dy D, Dg Ds D, Dy D, D, D,

0 0 1 1 1 1 1 1 0 0
A
B 0 1 1 0 0 1 1 0 0 0
C 0 1 0 1 1 0 1 0 0 0
C 1 1 0 1 0 1 0 0 0 0
D 0 1 1 0 1 1 0 1 0 0

Table 3: The checkword offset values

The purpose of adding the offset word is to provide a group and block synchronisation system
in the receiver/decoder. Because the addition of the offset is reversible in the decoder, the
normal additive error correcting and detecting properties of the basic code are unaffected.

The error-protecting code has the following error-checking capabilities:

a) Detects all single and double errors in a block.
b) Detects any single error burst spanning 10 bits or less.
c) Detects about 99.8% of bursts spanning 11 bits and about 99.9% of all longer bursts.

The code is also an optimal burst error correcting code 5 and is capable of correcting any
single burst of 5 bits or less.

The beginnings and ends of the data blocks ma be recognised in the receiver/decoder by using
the fact that the error-checking decoder will detect block synchronisation slip as well as the
additive errors. This system is made reliable by the addition of the offset words, which also
serve to identify the blocks within the group.

RDS Encoder Project Hamed Haddadi 13

3.4 Message format (session and presentation layer)

The main features of the message structure have been illustrated in figure 10. These may be
seen to be:

1) The first block in every group always contains a Program Identification (PI) code.
This information consists of a code enabling the receiver to distinguish between countries,
areas in which the same programme is transmitted and the identification of the program itself.

2) The first four bits of the second block of every group are allocated to a four-bit code
which specifies the application of the group. Groups will b referred to as types 0 to 15
according to the binary weighting of A;, A,, A, and A,. For each type (0 to 15) two
“versions” can be defined. The “version” is specified by the fifth bit (By) of block 2:

a) By = 0: the PI code is inserted in block 1 only. This is called version A.

b) By = 1: the Pl is inserted in blocks 1 and 3 of all group type. This is version B.

3) The Programme Type code (PTY) and Traffic Program identification (TP) occupy fixed
location in block 2 of every group. This is an identification number to be transmitted with
each program item and which is intended to specify the current program type (e.g. news,
sports...)

The above features are available in all of the 30 possible group types. The main objective of
this project is to transmit the station name. Groups 0A and 0B are the most basic groups that
without any need for other information, e.g. constant information feedback or traffic or text
update, will transmit the station name. Block 3 of Group OA consists of a list of alternative
frequencies. This feature is for hand-over between different frequencies for stations which
transmit over a wide geographical area and is not being used by the UCL radio station. Block
3 of group 0B simply repeats the PI code, with a different offset word, C’. Hence for the
purpose of this project, group 0B is chosen for transmitting the station name. Figure 11 shows
the format of the group type 0B.

MS
B, TP TA| DI segment

Checkword KGroup| E Checkword Checkword Programme service Checkwor
Pl code + type PTY ' 4 Pl code - ¥ %
1 name segment
offset A |code | offsetB offset C > offset [
INENNENRNENNENNI 11l Ily - (AENNRNRRRNNNEN] \
0T0t0i0]1] [olce [oJeJolo oo lels]o]s]5]5]5]5]
AL
d 0 0 1 2
prsnary 131151 I N i 3 4
"51 d 10 5 6
*Ld, 11 7 8
Prog. service name and Character nusnbers

DI segment address

Figure 11: Basic tuning and switching information — Type 0B group

A total of four type 0B groups are required to transmit the entire Program Service (PS) name
and therefore four type OB groups will be required per second. The Program Service name
comprises eight characters. It is the primary aid to listeners in program identification and
selection. The PS name is to be used only to identify the station. This text may be changed as
required by station, but shall not be scrolled or flashed or altered in a manner that would be
distracting to the viewer (i.e. not more frequently than once per minute).

Notes on group 0B:
1. TA = Traffic Announcement code (1 bit)

RDS Encoder Project Hamed Haddadi 14

2. M/S = Music-Speech switch code

3. DI = Decoder-Identification control code (4 bits). This code is transmitted as
1 bit in each 0B group. The Program Service name and DI segment address code (C; and Cy)
serve to locate these bits in the codeword. Thus in a group with C,C, = “00” the DI bit is ds.
These code bits are transmitted most significant bit (ds) first. Table 4 demonstrates the DI bit-
settings.

Settings Meaning

Bit d, set to 0: Mono

Bit d, set to 1: Stereo

Bit d; set to 0: Not Artificial Head

Bitd; setto I: Artificial Head

Bit d, set to O: Not compressed

Bit d, set to 1: Compressed

Bit d; set to 0: Static PTY

Bit d; set to 1: Dynamically switched PTY
Table 4: DI code bits
4, Program Service name is transmitted as 8-bit character as defined in the 8-bit

code-tables in annex E of RBDS standard [1]. Eight characters (including spaces) are allowed
for each network and are transmitted as a 2-characteer segment in each group. These
segments are located in the displayed name by the code bits C; and C, in block 2. The
addresses of the characters increase from left to right in the display. The most significant bit
(b7) of each character is transmitted first.

RDS Encoder Project Hamed Haddadi 15

4. Project objectives and strategies

As clearly suggested by the title, the main objective of this project is to build an RDS encoder
to enable the UCL radio station, RARE FM, to transmit the station name on the FM spectrum.
This task has been attempted in the Electronic & Electrical Engineering department. The main
reason of failure of previous attempts has been the absence of valid data for transmission. The
hardware design has been studied and areas for improvement have been identified. The focus
of the first stage of the project has mainly been on development of the message format and
session-presentation layer. The following objectives are set for the project:

. To build a complete (hardware & software) RDS Encoder to facilitate Program
Service transmission for RARE FM.

. To provide valid data according to the European RDS standard for encoding.

o To design and implement a user-friendly interface to enable non-technical personnel
to easily enter the desired PS name.

. To offer the facility to restore the settings hence avoid the need to enter the same data
in case of power failure.

. To complete the unit within the allocated time and budget, 6 months and £100.

The choice of group 0B for the purpose of the encoding has been based on the fact that it will
allow the transmission of PS with no need for any other information such as traffic or
announcement. This means that the unit functions as a stand-alone without any need for
further attention to provide data or network connection. Transmission of PS as the main
objective of the project will enable easy tuning for the in-car radio units.

4.1 Providing frame data

There are various constants and variables within a group. It would be possible to enable the
user to enter all the required data at the start-up part of the system. But this will only make the
unit extremely hard to operate as all the values have to be set according to the RDS standard
and any mistake will mean that the bit-stream is not verified and displayed at the receiver end.
In order to avoid this, the constant parts of the group data are set within the program memory,
according to RDS standard as explained below, and user is only required to enter the PS
name.

1. PI code: Figure 12 shows the PI structure.

bls‘ ‘ ‘bm bnl ‘ lbs b?\ ‘ ‘ba bs‘ ‘ ’bo

Figure 12: PI structure
These bits are all pre-set in according to RDS standard as followed:

Bits bys to byp: Country Code: These bits are set to 0xC or 0b1100 for UK.
Bits by; to bg: Area coverage: These bits are set to 0x0 or 0b0000 for local coverage.
Bits b; to by: Program reference number: These bits are set to 0x00 for not assigned.

Group Type: These bits are set to 0x0 for 0_group type.

By: This bit is set to 1 for group B type.

TP: This is set to 0 for no traffic program.

PTY: These bits are set to obooooo for not assigned.

TA: This is set to 0 for no traffic announcement.

M/S: This bit is set to 0 according to RDS standard by default for music.

. DI, C;, Cy: These bits are set in each group according to the group sequence in the
stream as followed:

PN LA WD

RDS Encoder Project Hamed Haddadi 16

A) First group: 0b0 (d;)00 for static PTY.

B) Second group: 0b0 (d,)00 for not compressed.

O Third group: 0b0 (d,)00 for no artificial head.

D) Second group: 0b1 (d,)00 for stereo.

9. Program Service name: Every group will transmit 2 characters, starting from the most

significant character, e.g. [RA] in (RARE __FM) is located in first group.

4.2 Data input method for PS

Data can either be input via setting 64 switches for the 8 character ASCII code of the PS name
or it can be input to the microcontroller via push button switches or a PS2 keyboard. The
analogue method has been attempted before and is extremely difficult to operate. The more
feasible design is to input the values to the microcontroller via a digital device:

A: PS2 keyboard. This method is extremely friendly but it introduces the complexity of
writing a keyboard driver and also occupying much more space while adding the risk of
breakages and damage in the busy studio environment.

B: Push button switches: Using three heavy duty push button switches, the user can decide
whether to restore the previous settings or not, scrolling between YES and NO, and then
pressing the SET switch. If he chooses not to restore the previous settings, he will scroll
through the available set of ASCII characters, from SPACE through Z. By pressing the set
button, the first character is set and stored in the EEPROM. The same routine is repeated for
the other 7 characters and by pressing the SET button for the final character, the program will
proceeds to CRC calculation. The disadvantages of this method are the cost of these switches
and the fact that using this method, it will take a bit longer to input the data. But the cost can
be compromised by the fact that the switches are not prone to damages in the studio
environment. Figure 13 shows the design of this interface.

s . -
.. SET
DOWN)

Figure 13: Data input via push-button switches

The following algorithm is implemented for polling for the switches for restoring data:

CHECK_SW TCH ; Polls switches for decision to restore setting
GET_IT btfsc SW TCH_PORT, 0
cal | DO_SET ; restore
btfsc SW TCH_PORT, 1
cal | D1_SET : Don't restore
got btfss SWTCH PORT, 2
goto CET_IT
movf DECI SI ON, W ; Check if D2 is not pressed
andlw Oxff ; without making a decision
btfsc STATUS, Z
goto CET_IT ; if yes, loop until decision is nmade
return

The following code demonstrates the acquisition of one PS character and storing it in the PIC
EEPROM:

CGET_PS8 btfsc SW TCH_PORT, 0

cal | CHAR_UP
btfsc SWTCH PORT, 1
call CHAR_DOWN

btfss SW TCH_PORT, 2

RDS Encoder Project Hamed Haddadi 17

got o CET_PS8
return
CHAR_UP
call SW TCH_DELAY
novf PCSI TI ON, 0 ; set display position
cal | SET_ADDR
nmovf CHARACTER, 0 ; nmove character to Wregister
call check_nmax ; check if reached the upper boundary
nmovf CHARACTER, 0
cal | LCD_CHAR
return
check_max ; it checks nor the upper character
nmovwf CHAR_TEMP , store the character |ocally
nmovf MAX_CHAR, 0 ; now nove MAX CHAR to Wregister
subwf CHAR_TEMP, 0 ; subtract the two files
btfsc STATUS, Z ; Is the result zero?? then we reached naxi mum
got o SET2MAX ; keep the character as it is
goto | NCREMENT ; if not reached the max, increment the character
SET2NMAX
novf MAX_CHAR, 0 ; Keep MAX_CHAR as the character of chioce
return
| NCREMENT
i ncf CHARACTER, 1 ; increnment the character
return
CHAR_DOWN
cal | SW TCH_DELAY
nmovf PGSI TI ON, O ; set display position
cal | SET_ADDR
movf CHARACTER, 0 ; move character to Wregister
cal | check_mn ; check if reached the | ower boundary
nmovf CHARACTER, 0
cal | LCD_CHAR
return
check_mn ; it checks nmor the | ower character
movwf CHAR_TEMP ; store the character locally
movf M N_CHAR, 0 ; now move MN CHAR to Wregister
subwf CHAR_TEMP, 0 ; subtract the two files
btfsc STATUS, Z Is the result zero?? then we reached m ni num
got o SET2M N ; keep the character as it is
goto DECRENMENT ; if not reached the min, decrenent the character
SET2M N
novf M N_CHAR, 0 ; Keep M N_CHAR as the character of chioce
return
DECREMENT
decf CHARACTER, 1 ; decrement the character
return
EEPROM storage:
movwf PS_8 , store in variable
bsf STATUS, RP1 ; Store in EEPROM
bsf STATUS, RPO
btfsc EECON1, WR ; Make sure there is no other WRITE in progress
call DELAY_5MS
bcf STATUS, RPO
nmovwf EEDATA
novliw 0x07
nmovwf EEADR
bsf STATUS, RPO
bcf EECON1, EEPGD
bsf EECON1, W\REN
nmoviw 0x55
novw EECON2
movlw Oxaa
movw EECON2
bsf EECON1, \R
bcf EECONL, WREN
clrf STATUS ;. Sel ect bank 0

4.3 Data display and user interface

As there is a need for characters to be displayed for verification and during transmitting stage,
there is need for a display. Two type of display are available:

A: Alphanumeric LED display

RDS Encoder Project Hamed Haddadi 18

This display is cheap and easy to operate as each character is driven separately and there is no
processing required, but in order to use this facility, there is a need for driving each character
separately, this will mean either using many ICs, which will increase the complexity of the
PCB and will introduce heat dissipation problems, or multiplexing the data line through one
IC, which maybe very complicated for driving a large number of characters.

B: Using an intelligent LCD display

The new ranges of displays have eliminated the need for driving each character separately by
using an internal chip and timing issues are dealt within the chip. But they are relatively
expensive and a typical entry level can cost around £30. There is also need for writing an
initialisation code for the display and one of the ports need to be constantly swapped between
input and output to check the busy flag of the LCD to make sure there in no data loss. The
initialisation code is as followed:

® [nitializing Flowchart(Condition: fosc=2TO0KHZ)

| Powver on |

Wait for more than 3hms
after Vdd rises o 4.5V

:

Function set
N [1-line mode
RS |[R'w|DBT7|DB6|DES |DB4 |DB3 |DE2 |DBI |DBO 1 | Z-line mode
o |lo|lo|o 1|1 |N|F]Xx]Xx = g
= 58 Dol
1 1| sxil Dots
| Wait for more than 39 ps
Display ON/OFF Control b] Display off
RS [Rw|pe7|DB6|DBES |DB2|DE3 |DB2 |DEI DB] Pusplay.on
o | o|o0oJo|o|lo]1l |D|C|B 3 1T Comsoroff
C et
l 1 Cursor on
| Wait for more than 39 ps
B 1] Blink off
‘1 1 Blink on

Display Clear
RS |[RW|DB7|DB6|DBS |DB4|DB3 [DE2 DB | DB
]] 0 1] 0 1] 0 1 1] 1

| Wait for more than 1.53mS

Entry Mode Set 1o |2 Decrement mode
RS |[RWIDB7 | DB DES |DB4|DEB3 [DE2 |DBE1 |DBED j 1 | Increment mode
[L] L] (1] 1] (] i} 1 I'D | 5H
1 SH 0 | Entire shifl off

| Initialization End)| Balireshilton

For the purpose of this project, a very cheap LCD module was obtained which would cost
60% less than the commercial ones available. But the initialisation was implemented in a
different way than the standard data sheet and the code is shown below:

7 INNT_LCD. Modul e to initialise the display
IR R R R SRR SR RS R R SRR R SRR R R R EER SR ER SRS R RS R R R ER R SR RREEEEEEREEEEREEEES]
I NI T_LCD
call DELAY_30MS
movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
cal | LCD_CWMND
call DELAY_5MS

RDS Encoder Project Hamed Haddadi 19

movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000

cal | LCD_CWVND

cal | DELAY_125US

movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
cal | LCD_CWVMND

cal | DELAY_125US

movlw OxOF ; display On, curser On, blink On 0b00001111
cal | LCD_CWND

call DELAY_5MS

movliw 0x01 ; display clear, 0b00000001

call LCD_CWND

return

The delays have been implemented using a series of recursive loops. All the function calls and
descriptions can be found in appendix A.

4.4 Data processing and input/output control

Providing the data at the right time for modulation with the FM signal has been the major
obstacle of this project in previous attempts. Analogue and digital methods have both been
tried and with great advantage, a digital source provides a much more versatile way of
controlling and manipulating the data. Since the use of intelligent LCD and de-bounce
switches will also emphasis the need for a microprocessor, this method was chosen for data
control. The following is the control software data flow required for the encoder:

Top Level Software Flow Diagram

Switch on

l

Display Opening
message

Do you want to use

previous settings?

Yes

Input New Data

Perform CRC

Output Data

After studying the wide range of microcontrollers that are commercially available,
Microchip’s PIC16F877 was chosen for the data control. This is an 8 bit microprocessor with
8k program memory and 256 byte EEPROM data memory which both memory limits were
enough for the application. The development environment, MPLAB IDE, is freely available
on the web and from Microchip’s website [2] and the programmer, PICstart PLUS, is
available in the departmental laboratory. Figure 14 shows the pin-out diagram of PIC16F877.

RDS Encoder Project Hamed Haddadi 20

PDIP

MCLRVee —] 1 —/ @] -— REIPGD
RADAND -—e_ 2 % | - FESEPGC
RAUAN1 -—[] 3 B - FE=E
RAIANZVEREF- -—e[¢ ERE
RAVANIVReF= H: 5 K : -— EELEE
RAATOCK] -—e[& B - FEC
: RASIANASS =[] 7 <« *Pe—r
| REO/RD/ANS =—=[& ~ 13] -—e ESOINT
{ RE1WRANE =—= [o € phe—we
RE2/CS/ANT =[] 10 ~ 310e—ws
VoD — [1 P 20— rOWP7
vss .12 o 20 - 0ePses
OSCUCLKIN —=[] 13 6 28 T -~ SOSPSPS
| OSC2CLKOUT «—[] 14 = 27 - FD4PSRe
| RCOTIOSOITICK] =—a[] 15 o 26 [=—s RCTRXOT
| RCUT1OSUCCPZ =—e[] 16 25 | -—= RCETRCH
| RC2/CCP1 -—e-[] 17 24 T - RCSSDO0
I RCY¥SCK/SCL =—=[] 18 23 [== RCASONSDA
RDO/PSPD =-—e 12 22 [-—e ROIPSF3
RD1PSP1 =—e [20 21] == RO2PSF2

|
Figure 14: Pin-out diagram of PIC16F877 micro-processor

It operates with clock rates of up to 20MHz giving an instruction arte of up to 5 MIPS, so the
clock frequency is equal to 0.2us. A crystal oscillator was chosen to ensure that correct
timings and clock rate are achieved. Figure 15 shows the connection of the crystal to the
microprocessor.

A
0SC1q

PICmicro®
@ Clock

Figure 15: Clocking the PIC
The suggested values for the stabiliser capacitors were between 15-33 pF.

Another problem encountered was the fact that switches bounce back after being pressed
down and released which would lead to many jumps in the character range with just one
switch. This problem was solved by adding a short 0.2 second de-bounce delay after the
switch port reading, which would clear the port from the previous switch voltage. The
switches were also tied with 4k7 Ohm resistors to limit the current drawn from the power
supply when the switches are being pressed often. Figure 16 demonstrates the data control
and user-interface of the RDS encoder.

RDS Encoder Project Hamed Haddadi 21

5v
—
U1
L3 { oscricLkin RBOINT |32
] esczcikour RB1
O X 1 VCLRppITHY RB2 gg
CRYSTAL 5 RBI/PGM |32
2 RA0AND RB4 |37
= RATANY Ras (32
< RA2/AN2/VREF- RB6/PGC 20
= RB7/PGD A
8 RA4/TOCKI_
] RAS/ANASS RCOIT10SOT1CKI|—13
s — RetTiosuccp2[—
——{ ReoANSRD. RC2/CCP1 [—
L2 REVANGWR RC3ISCKISCL [—] =
—t— RE2/AN7/CS RC4/SDI/SDA [—5
RC5/SDO [—2
ROBITXICK |2
RO7IRXIDT [~)
i
RO1/PSP1 |22 =
RO
R0 7
RO4/PSP4 |21
RD6/PSPS 22
RO7/PSP7 (30
R2 R1
PIC16F877 R3 || 4 4% o
4

Figure 16: RDS encoder data input and user interface

4.5 CRC calculation

Every block in the group contains a 16 bit information word and a 10 bit checkword which is
obtained by adding the result of the calculation of the Cyclic Redundancy Check to a specific
offset, as explained in section 3.3. Calculation of the CRC can be done in the hardware as
explained in the RDS standard. Figure 17 shows the hardware arrangement required to
generate the 10 bit CRC value.

Message input L.._.__J Qutpur to the

data chanee!

Figure 17: CRC generator circuit

This method can lead to a very high component count and greatly add to the complexity of the
circuits. It has the advantage of being easily implemented as the method is pre-designed.

It is also possible to calculate the CRC value in the microprocessor. This will lead to a much
less complex circuit and budget saving on component purchase. The only disadvantage of this
method is the need to divide a 26 bit number by a 10 bit number, in an 8 bit microprocessor.
This method was chosen to pursue whilst accepting the challenge of mathematical
manipulations. Figure 18 shows the basic method of performing a modulo2 division.

RDS Encoder Project Hamed Haddadi 22

Ductient
10101 100]

11311 :"I 110010 0000
Cenerator 11011

Polynomial EEEE] g |
g [y

11110

11011

[sE 5]

(s e e w]
10110
11011

11010
11011
o001 0
o000
[s]a] Fa's

[Wf]
IIRenvﬂnder

Figure 18: Modulo2 division

However, in a microprocessor, there are only 8-bit registers available, and there is no
command for modulo2 division. However, using pseudo algorithm this process can be
explained:

1. Load the register with zero bits.

2. Augnent the nessage by appending Wzero bits to the end of it.

Wil e (nobre nessage bits)

Begi n

3. Shift the register left by one bit, reading the next bit of the augnented
nmessage into register bit position O.

If (a 1 bit popped out of the register during step 3)

Regi ster = Register XOR Poly.

End

The register now contains the remainder.

In practice the IF condition can be tested by testing the top bit of Register before performing
the shift. Figure 19 demonstrates the implementation of the above technique. This method can
be extended for larger numbers. In the case of the RDS block, 26 bits means that four 8-bit
registers are used for the message data and the 10-bit polynomial will require two 8-bit
registers. A buffer register and two working registers will be used, and data is left-rotated into
the working registers, bit by bit, and whenever a 1 appears on the carry flag, both working
registers or XORed with the generator polynomial registers. This process is repeated until all
the 16 extra bits (in comparison with the 10-bit polynomial) are shifted out. The reminder in
the working registers is the CRC value for the given 16-bit information word.

Register

01|10|00| ASimpIeCRCI

¥OR The Poly

Ttoo0 1011 1 -4— Poly

.

Register After
XORing The Poly

E

l Left Bit Shift 1 bit Message

Register

11 10 0 01 1 0O

:

X0R
Message Bit

o 00 000 01

M

Register

E

|IOOIIOII,,,,"

l HNext bit in message is 1,
which can be expressed
as:

OOOOOOOII

Add the next message bit to
the register by XORIng it.

Repeat the steps until there are no
more message bits. The register
will then contain the checksum.

Figure 19: Modulo?2 division using one register

RDS Encoder Project

Hamed Haddadi

23

The following is an extract from the assembly code generating the CRC:

CRC_INIT ; Initialise the registers
clrf CHAR _BUF ; rotate left twice, through carry,
bcf STATUS, C ; so that the 10"X factor can correctly
rlf CHAR LOW 1 ; be inplenented, i.e. by adding an 8bit
rif CHAR HIGH, 1 ; all Os register to the end of the data,
rlf CHAR_BUF, 1 ; and shifting to left twice to have another
bcf STATUS, C ;2 obits.
rlf CHAR_LOW 1
rlf CHAR_HI GH, 1
rlf CHAR_BUF, 1
movliw 0x10 ;16 left shifts, for the CRC cal cul ation
movwf | TERATI ONS
nmovf CHAR_BUF, 0 ; shifting all to the right place
movwf CRC_HI GH
movf CHAR _HI GH, 0
mvwf CRC_LOW
novf CHAR_LOW 0
movwf CRC_BUF1
movlw 0x00 ; adding the last 8 zero's
movwf CRC_BUF2
nmovlw 0x05 ; Storing the g(x) polynomal in registers
movwf GXPOLY_HI GH
movlw 0xb9
movwf GXPOLY_LOW
return
CRC_CGEN ; CRC generator routine
bcf STATUS, C ; clear the carry bit
rlf CRC BUF2, 1 ; left shift all the data by one bit,
rif CRC _BUF1, 1 ; using carry flag, so the carry 1 or O
rlf CRC_LOW 1 ; wWill go to the LSB of next byte
rlf CRC HGH 1
btfsc CRC H CGH, 2 ; is the last bit a 1?
cal | DO _XOR ; if yes, XOR the working registers with g(x)
decfsz | TERATIONS, 1 ; Decrement iterations, nore bits left?
goto CRC_GEN ; if yes, do another bit
return
DO _XOR ; Mbdulo 2 division with the g(x)
novf GXPOLY_LOW 0
xor wf CRC_LOW 1
nmovf GXPOLY_HI GH, 0
xor wf CRC HGH 1
return

4.6 Bit stream output

Data transmission tasks start after the CRC calculation steps. User is informed of the
PS name currently being transmitted via the LCD display and the microprocessor constantly
polls for the 1187.5 signal. As soon as this signal goes high, the m.s.b of first block of the first
group is output to the output port. The block data is then rotated left and the carry will
represent the next bit to be transmitted. This process is repeated 16 times for block
information words and 8 times for each check-word value. For the top 2 bits of the check-
word values, the data nibbles are swapped and then rotated left twice. In this way there is only
need for two transmission cycles and many fewer instruction cycles. This is done in only 5
steps so it will have a frequency much higher than the 1187.5Hz signal. The next bit will be
ready for transmission before the 1187.5 goes high again. After the first group, the second,
third and fourth group are transmitted in turn and then the program loops back to the first
group. The following code is a very small part of the transmission assembly code:

movlw 0x02 ; Send the top two bits of PS checkword

movwf | TERATI ONS

nmovf CHCKWRD_3_HI GH, 0 ; Move the whole byte

movwf TRX_BUF

swapf TRX_BUF, 1 ;. Swap ni bbl es

rlf TRX_BUF, 1 ; Rotate left twice, to bring the first bit
rif TRX_BUF, 1 ; of the two bits to the MSB | ocation

call TRANSM T_BUF_DATA

movlw 0x08 ; Send | ower byte of PS checkword

RDS Encoder Project Hamed Haddadi 24

movwf

| TERATI ONS

nmovf CHCKWRD_3_LOW 0
movwf TRX_BUF
cal | TRANSM T_BUF_DATA
return

TRANSM T_BUF_DATA
rlf TRX_BUF, 1
btfss STATUS, C
cal | TRANSM T_O
btfsc STATUS, C
cal | TRANSM T_1
decfsz | TERATIONS, 1
goto TRANSM T_BUF_DATA
return

TRANSM T_0
btfss RDS_PORT, SI GNAL
goto TRANSM T_0
bcf RDS_PORT, RDS_DATA
return

TRANSM T_1
btfss RDS_PORT, SI GNAL
got o TRANSM T_1
bsf RDS_PORT, RDS_DATA
return

Rotate left once, in itself
Test the carry flag val ue
is carry 0? transmt a O

; Is carry 1? transmit a 1

; Decrenent iteration until it reaches 0

; I's 1187.5 high?

; No? then loop until it goes high

; Clear the port bit, 0 wll be nodul ated
; 1's 1187.5 high?

; No? then loop until it goes high

; Set the port bit, 1 will be nbdul ated

Transnit the data byte held in the buffer

Even though use of intelligent LCD and microprocessor has the disadvantage of taking a
considerable amount of time to develop skills in a new programming language and its
abilities, the time saved on designing complex circuits for the analogue techniques and the
extremely user-friendly interface means that the encoder would be compensate for the
software development time. The unit is much easier to operate and even upgrade in the future
if any other facilities such as radio text are considered to be added to the system.

RDS Encoder Project

Hamed Haddadi

25

5. Software development tools

The software side of the project is done using various simulation tools for the hardware parts
of the encoder block and assembly programming language is used for the microcontroller part
of the radio message source. This section entails a brief description of the software tools used
for software and hardware development.

5.1. MPLAB IDE

The assembly codes for the PIC microcontrollers used within the project are developed using
MPLAB Integrated Development Environment. Figure 20 shows a screen dump of the
MPLARB IDE software.

" MPLAB IDE - C:\DOCUME~1\HAMEDH~1,M¥DOCU~1UNIVER~1PROJECT\MPLAB\RDS.PIT o =] 53
File Project Edt Debug PICSTART Plus Options Tools Window Help
=] =m]a] =R =] [EIE]l
24 : 1iprojecty) =] 3] | B Speci E =10l
TRX_BUF ,1 Rotate left once, in itself «|l SFR Name Hex Dec Binary Char
btfss STATUS, C ; Test the carry flag value w L] a 080608009088 -
call TRANSHIT_@ ; is carry 87 transmit a @ tmre ;1] [:] apB6eAAAA
btfsc STATUS, C option_reg FF 255 11111111
call TRANSHMIT_1 ; Is carry 1? transmit a 1 pcl A7 167 10108111
decfsz ITERATIONS,1 ; Decrement iteration until it reaches 8 pclath (1]] 00800000
goto TRANSHIT_BUF_DATA status 1c 28 a8e11100
return Fsr 1) a 80860000
porta ;1] a LLLLLELT -
trisa 3F 63 ag11111 4
portb 1)] 0epee000
TRANSHIT_8 trisb [:15)] 06pEE000
= call DELAY 125US portc a8 a aapaARAA
btfss RDS PORT,SIGNAL ; 15 1187.5 high?] trisc FF 255 11111111
goto TRANSHIT_@ ; No? then loop until it goes high portd (1] 5] 0pep0000
bcf RDS_PORT, RDS_DATA ; Clear the port bit, 8 will be modulate trisd FF 255 11111111
return porte [:1:}] [:] apBeAAAA
trise a7 7 aapaA111
TRANSHMIT_1 intcon 1} a LLLLLELT
H call DELAY_125US pir1t (1)] 0080000
btfss RDS_PORT,SIGNAL ; Is 1187.5 high? piet [:15)] 06pBA000
goto TRANSHIT_1 ; No? then loop until it goes high pir2 1]] LLLGLLEL]
bsf RDS_PORT, RDS_DATA ; Set the port bit, 1 will be modulated J pie2 ;1] a LLLLLELT
return tmr11 L} a LLLELEL
tmr1h o8] 0eeee000
ticon [:15)] 06pB0000
~ [}l tmr2 a8 a aapaARBA
v pr2 FF 255 11111111
‘Il t2zcon 80] 0epe0000 &
=TT =10l =} sspbuf 80 8 0o8eoEg0 . -
- 42 GXPOLY_HIGH H' 85 ;I sspcon a8 a aapaAREA
2 a2z (call TRANSHIT_@) 43 GXPOLY_LOW H'B? sspcon2 a8 a 06pAARBD
3 8338 (call TRANSHMIT_BUF_DAT 3F CRC_BUF1 H' 88 _I sspadd an a LLLLEET
4 8327 (call TRANSHIT_GO) al CRC_BUF2 H' B8 sspstat (18]] 06pe0000
45 CHAR_HIGH H* BB ccpril [:15)] 06060000
46 CHAR_LOW H'B8 ccprih a8 a oapaARBA
a7 CHAR_BUF H' 88" ccpicon [:1} a LLLLLELT
37 PS_8 H' 88" rcsta aa] LLLLLELL
48 CHCKWRD @ HIGH H 81" txreg 1)] 0peee000
=l s, ruevuen e 0w weane Dl coroe An_ n_ ansesssn .

Figure 20: MPLAB IDE software

This software facilitates assembly code debugging, and it enables communication with the
programmer PICstart PLUS, which loads the program .HEX file into the PIC. The software
has been tested on the hardware circuit and it performs all the required action. The EEPROM
data is also restored after power-up if requested by the user

The main objectives of the project in this part are achieved. An easy to operate user-interface
is implemented and PS name is obtained from the user and the cyclic redundancy checks are
performed. The user is also informed of the transmitted PS via the LCD interface and he will
have the opportunity to restore the PS name in case the unit is turned off and then on for any
reason.

5.2. Orcad PSpice

PSpice is the design software by Cadence Ltd allowing simulation and synthesis of circuit
diagrams. All the circuit diagrams in this report have been designed using Orcad Design.

RDS Encoder Project Hamed Haddadi 26

5.3. Proteus Virtual Circuit Modelling

Proteus VSM is a mixed signal simulation environment allowing an extensive range of
microcontrollers and devices to be used within functional blocks. It also enables the use of
oscilloscope and signal generators so simulation of various signals within an embedded
system environment is possible using this software. Because of high license costs, an
evaluation model was used with a low code limit and component count however it helped
design of the PIC and LCD units. Figure 21 shows the interface of Protues VSM.

Fli Vow Edt Toos Coslgs Zowie Cebog Lbray Tomelate Swbom

..... T
T | 3k dzaa
| armand

mnrcro

TARFCIR AT e CIRFETT MardemcHONF: Tivdrm® PIRSFTT Fiarur=:HCH= » I » I 13 I] I | | ” & it

Figure 21: Proteus VSM software interface
5.4. Easy PC

Easy PC is the “Printed Circuit Board” design software provided by Number One Systems
Ltd. It enables design of various PCBs and it has a simple user interface allowing control over
drill holes and component spacing. This software was used to design the PCB for the radio
message source block.

RDS Encoder Project Hamed Haddadi 27

6. RDS encoder block circuits

Circuit blocks are all made according to RBDS standard [1] and using the block diagram of
figure 2 on page 7. The circuit diagrams and where relevant the input and output are shown.

6.1. Radio Data Message source

The radio data message source as explained in section 4.4 is designed using PIC16F877
microcontroller and heavy duty push button switches. Pull-up resistors of 4k7 Ohms are used
to limit the current on the PIC ports when switches are pushed down or when the 1187.5
signal goes high. An extra emergency battery holder, containing 3 AA batteries will be added
to make sure that the module doesn’t stop transmitting if disconnected for a short period of
time. Figure 22 shows a picture of the data message source on breadboard and figure 23
shows the PCB design for this part of the encoder.

Figure 23: PCB design for the data message source block

RDS Encoder Project Hamed Haddadi 28

6.2. Differential encoder

Data from the PIC port is passed to a differential encoder. This block is explained in the
section 2.6, extracted from the RBDS [1] standard. The flip-flop used is a Philips 74HC74 D-
type positive edge-triggered flip-flop. Exclusive-OR function was implemented using a
Fairchild DM74LS86 2-input gate. Figure 24 shows the PSpice diagram of the differential
encoder.

U4A

From PIC > 2 3
1
U1A
741586 74LST:
14 J1 Q1 12

1187.5

%m bi-phase Encoder

CLK1

»
cL1
2l

13

02

Figure 24: Differential encoder

6.3. Bi-phase symbol generator

The bi-phase symbol generator converts each bit to an odd pair of short pulses which are
spaced one bit length. A "1" is converted to a +- pair, a "0" is converted to a -+ pair. The
pulses are then passed through a 2™ Order Sallen-Key low-pass filter with a cosine-shaped
transfer function. The combination of this filter and the inherent spectrum-shaping of the bi-
phase scheme lead to a spectrum with a maximum near 1 kHz and zero amplitude at 0 and 2.4
kHz. Section 2.7 explains the theory behind bi-phase encoding. As delay and subtraction of
short pulses is not possible in the flip-flops, another PIC microcontroller was used for
generation and subtraction of data pulses, namely PIC16C622. The system is clocked with the
2375Hz clock generated from the divide-by-24 counter. The PIC starts of by polling for the
1187.5 clock. When this clock goes high, it also polls for the data line and output is decided
based on table 5. In this case the previous input is zero as the input is only valid when the
1187.5 clock is high. The PIC generates the output pulse of short duration, about 51us, by
taking an output port high, then pulling it low after the delay. When a negative pulse is to be
generated, one of the PIC ports goes high, but the output is connected to a fast inverting
amplifier circuit, using MC33171 Op-amp with slew rate of 2V/pu. The next time that the 2375
signal goes high, the 1187.5 is low so the input data is considered to be zero. The output is
then decided to be the opposite of the previous output, according to table 6.

Input N Previous Input N-(N-1)
(N-1) output

+VE 0 +VE

-VE 0 -VE

Table 5: Output at 1187.5 data signal levels

Input N Previous Input N-(N-1)
(N-1) output

0 +VE -VE

0 -VE +VE

Table 6: Output at 2375 zero pulse level

The following is an extract from the assembly code written for bi-phase symbol generation
from the PIC.

RDS Encoder Project Hamed Haddadi 29

pol 111875

si gnal _pul se

pol 1 2375

cl ear_pul se

PULSE_HI GH

PULSE_DOWN

bt fss
goto
return

bt fss
goto
goto

btfss
goto
return

btfsc
goto
goto

bsf
cal |
bcf
bsf
return

bsf
call
bcf
bcf
return

PORTB, CLK11875
pol 1 11875

PORTB, RDS
PULSE_DOWN
PULSE_HI CH

PORTB, CLK2375
pol | 2375

MEMORY, 0
PULSE_DOWN
PULSE_HI CH

PORTB, PULSEH GH
DELAY_51US

PORTB, PULSEH GH

MEMORY, 0

PORTB, PULSEDOM
DELAY_51US

PORTB, PULSEDOM

MEMORY, 0

Figure 25 shows the PSpice diagram of the PIC configuration for bi-phase symbol generation.

U1

—<___]1187.5 clock

0 l > High Pulse

D% RAO/ANO RBO/INT ?—D 2375 clock
22pF O——>— RA1/AN1 RB1
| CRYSTAL D—; RA2/AN2/REF RB2 g |—<:|RDS data
| 0—735— RA3/AN3 RB3 g
-+ O—=—>RA4/TOCLK RB4
10MHz 1
20F [RB5
| + 128-bosci/cLk RB6{5

5V, 14 VDD

OSC2/CLKOUT RB7

PIC16C622

u
\—B LOW pulse (to -ve opamp)

Figure 25: PIC16C622 for bi-phase symbol generation

Figure 26 shows the PSpice diagram of the inverting amplifier for negative pulse generation.

Pulse from PIC

1k

-12v
A

< | W0

MC33171
2

3
+
L1
f'\‘_

+12V

Figure 26: Inverting amplifier for negative pulses

RDS Encoder Project

6 —<:|To shaping filter

Hamed Haddadi 30

6.4. Shaping filter

Data from the bi-phase symbol generator must go through a shaping filter as explained in
section 2.7. This is a raised cosine filter with 100% roll-off and cut-off frequency of
1187.5Hz. A 2™ order Sallen-Key was devised for this purpose. The component values are
calculated to give a cut-off at 1187.5Hz frequency, thus giving
2 1
C = 2 o :
Ro, J2Rw,

where g is the cut-off frequency in radians. Using 10nf capacitors, R1 will be 18K9 Ohms
and R2 will be 9k5 Ohms. Figure 27 shows a PSpice diagram of the shaping filter.

1

L [™>to modulator

R1

Bi-Phase pulses

-VE 12V

Figure 27: Shaping filter

6.5. 57 kHz signal generator

The RDS data has to be modulated with the FM signal and hence it needs to be clocked. The
RDS carrier is at 57 kHz while the only signal available from the station stereo coder is the 19
kHz pilot tone. In order to generate a 57 kHz carrier in phase with the 19 kHz pilot tone, it is
possible to use a filter to find the 3 harmonic. This would need many active components and
would require considerable phase compensation. As the 19 kHz pilot tone is a square wave, it
can be fed into a Schmidt trigger circuit, then using a phase-locked-loop to generate a 57 kHz
signal from the 3" harmonic. A dedicated PLL chip, HC4046B by ST, is used and the voltage
controlled oscillator’s output is then fed into a divide-by-3 circuit.

Divide-by-3 part of the PLL is implemented using a pre-settable counter, HCC4018B, and 2
NAND-gates, on HCF4011B. Figure 28 shows the oscilloscope display of this division. It is
not possible to get a 50% duty cycle from the circuit because of the configuration of the gates,
but as PLL is edge-triggered, this causes no problems for the system.

Tek e, ® Stop r Posi 00005 MEASURE
= R S e e R

__ Al
-1 6.344kHz?
Pk—Pk
B.60Y
Freq
* 18.34kHz?

Pk=Pk
: : :] = 1 ! ¥ ; GOV
CH1 S.00v CHz S.00v r 50,008 CH1 ~ 1.71V

Figure 28: Divide-by-3 waveform

RDS Encoder Project Hamed Haddadi 31

Using a few variable resistors at the VCO input and the R1 input on pin 11 it is possible to get
a 57 kHz signal with less than 0.05% variation at times, which is due to variations in the 19
kHz signal input. Figure 29 shows a PSpice diagram of the complete PLL and divide-by-3
circuit.

vee
(o]
N 741500 J 741500
2 2
SarSine Converter 57 khz <} -=3<,\/ j’\/ ;
I T T
DM7476 DM7476 ‘
o— PP oINS 141 1 a1 (2 52 Q2
P1 vcouT , .
14 I L—3cbcLk2
P2 SIN 3 b 10 N — |8
47k 5 Kl o a2 K2 © @0
X i
JCAPMF 10K o ©
VCOIN ox &
12 pevo "R
AP 10007 15 | DEM Rz,
2046
10k
Phase Adjust ~
[EA £ 3
10k
Phase Adjust USA
19kHz Sinusoidal Wav e input 1 2

74HC14

Figure 29: PLL and divide-by-3 circuit

Figure 30 shows the oscilloscope waveform of the 19 kHz input and the 57 kHz output of the
PLL circuit.

Tek Sl Trig’d K Pos: 0.000s MEASURE

CH1
: : : S ; : Freq
s 3 e e e g e eeeiena s feeseme e S v 1H94kHER

B T AW SN T R I (P e R v

6.20%

: : Freq
J b L) b Ll 5BaskHz?

2sf n

Pk=Pk
6.20Y

CH1 500% CH2 5.00% M 250us CH1 7 247Y

Figure 30: PLL waveform

6.6. Divide-by-24 counter

In order to generate the 2375 Hz signal for the bi-phase signal generator, the 57 kHz signal
must be divided by 24. This is done in two stages using HCF4018B divide-by-N counters,
dividing by 6 at the first stage, and dividing the output by 4 at the second stage. This signal is
then used to clock the PIC for the bi-phase symbol generator. Divide-by-24 stage does not
require any extra gates or components as the dividers allow straight division for even
numbers. Figure 31 shows the PSpice diagram of the divide-by-24 circuit.

RDS Encoder Project Hamed Haddadi 32

Divide by 6 Divide by 4
Ho mhs Ho mho
12 Q2 == 12 Q2 =1 >2375clock
7 6 7 6 -
g |13 Q3 4 9|8 Q3 =7 -
12 | 4 Q4 —z—H 12 | 4 Q4 —z—H
15 Q5 /14 15 Q5 /14
14 14
57KHz Clock<____———="bCLK +5V CLK
+5V 1 1
10| B 10| B
157 PRE 157 PRE
RST RST
1 4018 = 4018

Figure 31: Divide-by-24 counter

Figure 32 shows the oscilloscope waveform of the divide-by-24 circuit. There is no phase
shift introduces as result of this division.

TPR - Trig'd k1 Pos: 0.000s MEASURE

RINLINE I I TN B I I__'!'!'I\'!lt\\!t\! LIS LI I I I)

ol | ﬂﬂﬂJlﬂ ML”JW ”Jl. Flﬂ ilﬂ.ﬂ TULHJLH fUL”
e Freg
T S S - R
ElIiI:IIiI.EiIIIEiI.Ii!IIIiEIiIIEIiLIEIIIIEIIII:IIIIE Pkﬂpk
: S0
Freg
" 2575kHz?
: Pk-Pk
ST T - S] 5.40%
CH1 500y CH2 500V M 50.0us I:HE ..-"' 1,97

Figure 32: Divide-by-24 waveform

Figure 33 shows the circuit configuration for the PLL and divide-by-24 blocks.

Figure 33: PLL and divide-by-24 circuits

RDS Encoder Project Hamed Haddadi 33

6.7 Divide-by-2 counter

In order to generate the 1187.4 Hz clock for data output from the message source, the 2375
has to be divided by 2. This is done by using a simple DM74LS393N counter. Figure 34
shows the PSpice diagram of the circuit configuration.

U1A
1 [— 3
2375Hz <___—pCLK QA —<_]1187.5 Hz
2 S -
<+— CLR Qc o
+5V Qb —3
7418393

Figure 34: Divide-by-2 counter

Figure 35 displays the waveform output for the complete 57 kHz division to generate the
1187.5 Hz signal.

Tel. Tl & Stop b Pos: 00005 MEASLIRE

CH1
Freq
: 1.158kHz ?
Pk—Pk
ooy
Freq
b S6.G6kHz 7
- Pk—Pk

: : : : M : : : : coay
CHT &o0v CH2 Soov b 100us CHT 1.2y

Figure 35: Divide-by-2 waveform

6.8. Modulation

The RDS bi-phase filtered symbols are modulated into the FM signal using double sideband
suppressed carrier method. The carrier is generated using the 57 kHz clock generated by the
PLL circuit. This is a square wave and it is converted to a sinusoidal wave for use by the
modulator. This conversion is done by using an L-C tuned circuit with a centre frequency of
57 kHz. As the current drawn by the modulator is very little there is no need for transistor
biasing. Figure 36 shows the PSpice diagram of the square-to-sinusoidal converter.

220k

57kHz Sq. Input > At < 57kHz Sine out

100mH e
7~ 1pF<C<10pF

Figure 36: Square-to-sinusoidal wave converter
The output can be adjusted using the trimmer until the two waves or completely in-phase.

Figure 37 shows the oscilloscope waveform output for the square-to sinusoidal waveform
converter.

RDS Encoder Project Hamed Haddadi 34

Tek S Trig"d M Pos: 0,000s MEASURE

CH1
] Freq
1 57.11kHz
Pk—Pk
1 512y
. Freq
©r1 56.89kHz
- Pk-Pk
- 2 : : : % : : : 3 512y
CH1 200 CHZ2 2.00v M 5.00us CH1 & —-87.5mY

Figure 37: Square-to-sinusoidal waveform

Modulation of the data with the carrier is done using AD633 chip from Analog Devices. It is a
low cost analogue multiplier which uses two external capacitors for double sideband
suppressed carrier modulation. Figure 38 shows the circuit configuration of the modulator.

H

240nF
AD633JN
8
1 817
RDS data stream > 2 7 5 to station transmitter
3 6
57kHz carrier D—I 4 52
)
< I
)

240nF
Figure 38: Modulator

Figure 39 displays the oscilloscope waveform of the modulator output, the input is a pure sine
wave for demonstration purposes.

Tek 1.

i Pos: 0.000s MEASURE

LR R Ko bl s Nt [

1 : : : Freq
coogmm . 1.186kHz
:
Pk—-Pk
4,64y
Freq

!' S7.12kHz?
|

i Pk-Pk
114y
CH1 7 132y

CHZ 200m% 25005

CHi S

Figure 39: Modulator waveform

RDS Encoder Project Hamed Haddadi 35

Figure 40 shows the complete modulator block and square-to sinusoidal converter circuit and
the inverting regulator on breadboard.

Figure 40: Modulator circuit

6.9 Power supply

Most of the components and circuits in the unit require 0V and +5V supplies. The modulator
and inverting amplifier and filtering circuits operate in the range of -12V to +12V. Therefore
a 12V, 400 mA adaptor is purchased to provide regulated DC power from mains. For the
circuits requiring +5V supply, a positive voltage regulator is used to provide regulated DC
voltages. Figure 41 shows the PSpice diagram of circuit configuration of the regulator.

L7805/TO220

+12V DC from adaptor 1

QT VIN VOUT T+5V

CAP 0.33uF

T _ T o4

Figure 41: Positive voltage regulator

The -12V voltage is provided using LT1054 from Linear Technology, a switched capacitor
voltage converter with regulator. It simply inverts the input voltage and uses two 100 uF

capacitors. Figure 42 shows the PSpice diagram of the circuit configuration for the voltage
inverter.

FB/SD VOUT 4 <>-ve12v

N
CAP+ CAPACITOR 100uF
CAP-

>0SC
VREF

I
T

CAPACITOR 100uF

o Lk |

+VCC

LT1054

+vle 12v input

Figure 42: voltage inverter

RDS Encoder Project Hamed Haddadi 36

7. Conclusions and future work

7.1 Objectives and achievements

The initial objectives of the project and achievements are discussed within this section.

Objective A) Provide RDS data stream for transmission.

This requirement has been fully met as the complete data message source unit has been
designed and tested according to RBDS standard [1]. Valid data is output from the complete
encoder circuit.

Objective B) Complete the real time control software.
This objective has been fully achieved as the control software completes the CRC error
detections and then outputs the data at the right frequency when the 1187.5 signal goes high.

Objective C) Design and build a stand-alone RDS encoder circuit within budget

This objective is achieved based on the fact that all the functional modules and circuits are
tested and synthesized. The PCB design for the data message source has been completed but
the PCBs for the rest of the encoder circuits have not been completed yet. One of the
obstacles in the design has been the lack of PCB auto-routing software that enables PCB
design from schematic diagrams. Table 7 shows the bill for the complete list of components.
It can be verified that the whole system has been built with a budget much less than 31 year
project budgets, £100. The only part that has not yet been purchased is a PCB rack for the
system which will cost no more than £20.

Component Quantity Cost
Trimod LCD 16x2 1 £10.38
Push button switch 3 £14.04
PIC 16F877 MCU 1 £8.72
10 MHz crystal 2 £5.24
4018 Counter 3 £1.48
Power switch 1 £1.71
4046 PLL 1 £0.48
Emergency battery holder 1 £1.14
Inverting regulator 1 £4.06
Modulator 1 £0.95
PIC 16C622 1 £4.78
Regulator 2 £0.87
DC adaptor 1 £7.99
Misc. components - £5.00
Total £66.84

Table 7: Project component purchase price

7.2 Future work and improvements

The work to be done in the future includes designing PCBs for the rest of the module and
mounting the components. Another task to be completed is extraction of the 19 kHz pilot-tone
from the stereo-coder and feeding it into the system. The final task is to test the system on-air,
when RARE FM launches officially in spring 2004.

RDS Encoder Project Hamed Haddadi 37

8. Appendix

A.RDS.asm
; Fi | enane: rds. asm *
; Dat e: 10t h Novenber 2002 *
B R R R
list p=16f 877 ; list directive to define processor
#i ncl ude <pl6f877.inc> ; processor specific variable definitions

__CONFIG _CP OFF & WDT OFF & BODEN OFF & PWRTE ON & XT _OSC & WRT ENABLE ON
& _LVP OFF & _DEBUG OFF & _CPD OFF

; ¥**** VARI ABLE DEFI NI TI ONS

LCD_DATA EQU PORTB

LCD_CTRL EQU PORTE

SW TCH_PORT EQU PORTD ; Switches

RDS_PORT EQU PORTC ; The 1187.5Hz signal input & RDS output port

; PORT E, LCD control bits

RS EQU 0 ; LCD Register-Select control line

RW EQU 1 ;. LCD Read/Wite control line

E EQU 2 ; LCD Enabl e control line

; PORT C, RDS data stream out put

RDS_DATA EQU 7 ; RDS data streamoutput, to be transnitted

S| GNAL EQU 6 ; 1187.5 signal

LCD_BYTE EQU 0x20 ; tenporary register store for character byte to be sent
to lcd

CNT_DELAY1 EQU 0x21 ; tenporary count register for 125 microsecond del ay
routine

CNT_DELAY2 EQU 0x22 ; tenmporary count register 5 and 30 millisecond del ay
routines

CNT_DELAY3 EQU 0x23 ; Tenmporary count for |ong del ay

LCD_TEMP EQU 0x24 ; Tenporary register for LCD BUSY function

CHAR_TEMP EQU 0x25 ; Tenporary storage for character conparisons

Ms5 EQU 0x27 ; value to give a 5 mllisecond delay in delay |oop
MS30 EQU oxe7 ; value to give a 30 nillisecond delay in delay |oop
Us125 EQU Ox2a ; value to give a 125 microsecond delay in delay |oop
LCD LI NE1 EQU 0x00 ; Address of character 1, Line 1

LCD LI NE2 EQU 0x40 ; Address of character 1, line 2

PS 1 EQU 0x30 ; Registers to store the 8 character PS

PS 2 EQU 0x31

PS_3 EQU 0x32

PS_ 4 EQU 0x33

PS 5 EQU 0x34

PS_6 EQU 0x35

PS 7 EQU 0x36

PS_8 EQU 0x37

CHARACTER EQU 0x38 ; Character to be displayed and changed on LCD
MAX_CHAR EQU 0x39 ; The upper limt of the transmittable character range
M N_CHAR EQU 0x3a ; The lower Iimt of the transmittable character range
DECI SI ON EQU 0x3b ; The storage for user decision

POSI TI ON EQU 0x3c ; Position of the character on the LCD

CRC_HI GH EQU 0x3d ; CRC calcul ation registers

CRC_LOW EQU 0x3e

CRC_BUF1 EQU 0x3f

CRC_BUF2 EQU 0x41

GXPOLY_HI GH EQU 0x42
GXPOLY_LOW EQU 0x43

| TERATT ONS EQU 0x44
CHAR_HI GH EQU 0x45
CHAR_LOW EQU 0x46
CHAR_BUF EQU 0x47
CHCKWRD_0_HI GH EQU 0x48 ; PS checkwords for 4 different groups

CHCKWRD 0_LOW EQU 0x49
CHCKWRD_1_HI GH EQU Ox4a
CHCOKWRD_1_LOW EQU 0x4b
CHCKWRD 2_HI GH EQU ox4c
CHCKWRD 2_LOW EQU 0x4d
CHCKWRD 3_HI GH EQU ox4e

RDS Encoder Project Hamed Haddadi 38

CHCKWRD 3_LOW

Pl _LOW
Pl _HI GH

Pl TCHCKL_LOW
Pl _CHCKL_HI GH
Pl _CHCK3_LOW
Pl CHCK3_HI GH

BLCK2_OHI GH
BLCK2_OLOW

BLCK2_0CHK_LOW EQU
BLCK2_0CHK_HI GH EQU

BLCK2_1HI GH
BLCK2_1LOW

BLCK2_1CHK_LOW EQU
BLCK2_1CHK_HI GH EQU

BLCK2_2HI GH
BLCK2_2LOW

BLCK2_2CHK_LOW EQU
BLCK2_2CHK_HI GH EQU

BLCK2_3HI GH
BLCK2_3LOW

BLCK2_3CHK_LOW EQU
BLCK2_3CHK_HI GH EQU

TRX_BUF

Pl words

Pl checkword with offset A for first block

Pl checkword

Bl ock 2 data

Bl ock 2 data

Bl ock 2 data

Bl ock 2 data

Dat a buffer,

with offset C for t

first group

second group

third group

fourth group

for bit-by-bit ouput

hird bl ock

B
’

org

RESET goto

START

clrf
clrf
clrf
clrf
clrf
bsf
clrf
clrf
clrf
movl w
movwf
clrf
bsf

mov| w
nmovwf
bcf

cal

; call

; movl w

; cal l

; cal l

; cal l

; movl w
cal |

; cal l

; cal l

; cal l

; mov| w

; cal l

; cal l

; cal l

; movl w

; cal l

; cal |

; cal l
; cal l

Do initialization,

Sel ect bank 0

ALL PORT out put shoul d output Low

LCD data Port

RDS signal 10 port
Swi tch port

Sel ect bank 1

just to save power!
PORT E out put

RB7-0 out puts
clear TRISC, apart

frombité for

di sabl e pull-ups on port B

Port Eis digita

EQU Oox4f

EQU 0x50

EQU 0x51

EQU 0x52

EQU 0x53

EQU 0x54

EQU 0x55

EQU 0x56

EQU 0x57
0x58
0x59

EQU Ox5a

EQU 0x5b
0x5¢c
0Ox5d

EQU Ox5e

EQU Ox5f
0x60
0x61

EQU 0x62

EQU 0x63
0x64
0x65

EQU 0x66

0x00

START

STATUS

PORTE

PORTB

PORTC

PORTD

STATUS, RPO

TRI SA

TRI SE

TRI SB

0x40

TRI SC

| NTCON

OPTI ON_REG, NOT_RBPU

OXFF

ADCON1

STATUS, RPO

Sel ect bank 0

STORE_CONSTANT_DATA

INIT_LCD
LCD_LI NE1
SET_ADDR
GREETI NG
LONG DELAY
LCD_LI NE2
SET_ADDR

| NTRODUCE
LONG DELAY
LCD CLEAR
LCD LI NE1
SET_ADDR
DECT DE
LONG DELAY
LCD LI NE2
SET_ADDR
QUESTI ON

CHECK_SW TCH
SW TCH_DELAY

RDS Encoder Project

Initialise the LCD

LCD set on Line 1
Greets the USER

LCD set on Line 2

cl ear display

LCD set on line 1

Makes deci si on

LCD set on Line 2

Check for answer

character 1

character 1

character 1

character 1

Hamed Haddadi

1187.5 i nput

39

cal |
movl w
cal |
btfsc
cal |
cal |

; cal l

cal |
movl w
cal |
cal |

; cal l
call

call
movl w
cal |
call

mov| w
call
cal |

goto

LCD_CLEAR

LCD_LI NE1

SET_ADDR : LCD cleared, |inel

DECI SI ON, 0 ; Skip to restore previous settings
CET_PS ;. Get and store the new PS

SW TCH_DELAY

RESTORE_PS ;. Restore PS from EEPROM

LCD CLEAR

LCD_LI NE1

SET_ADDR

CRC_BUSY ; LCD displays that CRC is being cal cul ated

LONG_DELAY

CRC_CALC ; calculate the CRC checkword val ues
LCD_CLEAR

LCD_LI NE1

SET_ADDR

TRANSM T_DI SPLAY

LCD_LI NE2

SET_ADDR

DI SPLAY_PS ; Display the transmtted PS

TRANSM T ; Transmit the RDS groups

| HHBH R
; FUNCTI ON LI ST
| HHBH R

STORE_CONSTANT_DATA ; stores the values of constants for transm ssion
movlw OxcO ; Move 11000000 to PI upper register
nmovwf Pl _H GH
movl w 0x00 ; Move 00000000 to PI | ower register
nmovwf Pl _LOW
movlw 0x00
nmovwf Pl _CHCKL_HIGH ; PI checkword with offset A for first block
movlw Oxd5
movwf Pl _CHCK1_LOW
movlw 0x03
movwf Pl _CHCK3_HIGH ; PI checkword with offset C for third bl ock
movlw 0x79
movwf Pl _CHCK3_LOW
movlw 0x08 ; Block2 data for the first group
movwf BLCK2_OHI GH
movlw 0x08
movwf BLCK2_OLOW
movlw 0x01
nmovwf BLCK2_OCHK_HI CH ; Checkword with offset B
movlw 0Oxc2
movwf BLCK2_OCHK_LOW
movlw 0x08 ; Block2 data for the second group
movwf BLCK2_1HI GH
nmovlw 0x09
movwf BLCK2_1LOW
movlw 0x00 ; Checkword with offset B
movwf BLCK2_1CHK_HI GH
movlw Ox6b
movwf BLCK2_1CHK_LOW
nmovlw 0x08 ; Block2 data for the third group
movwf BLCK2_2HI GH
nmovlw OxOa
movwf BLCK2_2LOW
movlw 0x02 : Checkword with offset B
movwf BLCK2_2CHK_HI GH
nmovlw Oxb0
movwf BLCK2_2CHK_LOW
movlw 0x08 ; Block2 data for the fourth group
movwf BLCK2_3HI GH
movlw OxOf
movwf BLCK2_3LOW
movlw 0x00 ; Checkword with offset B
movwf BLCK2_3CHK_HI GH

RDS Encoder Project Hamed Haddadi 40

nmovl w
nmovwf

return

0x58

BLCK2_3CHK_LOW

B R R R RS

© INIT_LCD.. ..

Modul e to initialise the display

Ckkkk kK hkkkkhkkkkkkkkhkkhkkkhhkhhhhkkkhhkkkhhkkkhkkkkhkkkkkkkkkkkkkkkkkk k& %

I NI T_LCD
cal

movl w
cal
cal

nmov| w
cal
cal

nmov| w
cal
cal

mov| w
cal
cal

nmov| w
cal

return

CGREETI NG
nmov| w
cal
nmov| w
cal
nmov| w
cal
movl w
cal
nmov| w
cal
nmov| w
cal
mov| w
cal
nmovl w
cal
movl w
cal
nmov| w
call
nmov| w
call
nmov| w
cal
mov| w
cal
mov| w
call
nmov| w
call
nmov| w
cal
return

| NTRODUCE
movl w
cal
nmovl w
cal
movl w
cal |
nmov| w
cal |
mov| w
cal |
movl w
cal |
nmovl w
cal |
movl w
cal |
nmov| w
call
movl w
cal |

DELAY_30MS

0x38
LCD_CM\D
DELAY_5MS

0x38
LCD_CM\D
DELAY_125US

0x38
LCD_CM\D
DELAY_125US

0xOF
LCD_CM\D
DELAY_5MS

0x01
LCD CM\D

g
LCD_CHAR
Ty

LCD_CHAR

LCD_CHAR
"H

RDS Encoder Project

8-bit-interface

8-bit-interface

8-bit-interface

di splay On, curser

di splay clear, 0b00000001

2-lines...
2-lines...
2-lines...

Hamed Haddadi

0b00111000

0b00111000

0b00111000

On, blink On 0b00001111

41

mvliw A

cal | LCD_CHAR
moviw 'D
cal | LCD_CHAR
movliw 'D
cal | LCD_CHAR
mvliw A
cal | LCD_CHAR
moviw 'D
cal | LCD_CHAR
movliw "1’
call LCD_CHAR
return

DECI DE
mvlw 'R
cal | LCD_CHAR
moviw 'E
cal | LCD_CHAR
mviw 'S
cal | LCD_CHAR
mvliw T
call LCD_CHAR
mvliw 'O
cal | LCD_CHAR
mviw 'R
cal | LCD_CHAR
moviw 'E
cal | LCD_CHAR
mvlw "'
call LCD_CHAR
mvlw 'S
cal | LCD_CHAR
mviw 'E
cal | LCD_CHAR
mvliw T
cal | LCD_CHAR
mvliw T
cal | LCD_CHAR
mvlw "1’
cal | LCD_CHAR
mvliw ‘N
cal | LCD_CHAR
mvlw 'G
cal | LCD_CHAR
movlw 'S
cal | LCD_CHAR
return

QUESTI ON
mviw "Y'
cal | LCD_CHAR
movliw ' FE
call LCD_CHAR
mvlw 'S
call LCD_CHAR
mvlw /'
cal | LCD_CHAR
mviw "N
cal | LCD_CHAR
mvliw 'O
call LCD_CHAR
movliw ' ?
call LCD_CHAR
return

CHECK_SW TCH ; Polls switches for decision to restore setting

GET_IT btfsc SW TCH_PORT, 0
call DO_SET
btfsc SW TCH_PORT, 1
cal | D1_SET

got btfss SWTCH PORT, 2
got o CET_IT
nmovf DECI SI ON, W ; Check if D2 is not pressed
andlw Oxff ; without nmaking a decision
btfsc STATUS, Z
goto GET_IT ; if yes, loop until decision is nade
return

DO_SET
cal | SW TCH_DELAY
movlw 0x48
cal l SET_ADDR : LCD set on Line 2, character 9
mviw ‘N
call LCD_CHAR
mvliw 'O
cal | LCD_CHAR

RDS Encoder Project Hamed Haddadi

nmov| w
cal
mov| w
nmovwf
return

D1_SET

cal
nmov| w
cal
mov| w
cal
movl w
cal
mov| w
cal
nmovl w
nmovwf
return

PS_REQUEST
nmov| w
cal
nmov| w
cal
movl w
cal
movl w
cal
movl w
cal
nmov| w
cal
mov| w
cal
movl w
cal
movl w
return

GET_PS
cal
nmovl w
movwf
nmov| w
nmovwf

movl w
nmovwf
cal
movl w
nmovwf
cal
call
nmovwf

bsf
bsf
btfsc
cal
bcf
nmovwf
nmov| w
nmovwf
bsf
bcf
bsf
nmov| w
movwf
movl w
movwf
bsf
bcf
clrf

cal

nmovl w
movwf
nmovf
cal
cal
nmovwf
bsf
bsf
btfsc
cal
bcf
nmovwf

LCD_CHAR
Ox1
DECI SI ON

SW TCH_DELAY
0x48
SET_ADDR

PS_REQUEST

M N_CHAR
s
MAX_CHAR

0x40
POSI TI ON
SET_ADDR
CA
CHARACTER
LCD_CHAR
CGET_PS1

PS 1

STATUS, RP1
STATUS, RPO
EECON1, \R
DELAY_5MS
STATUS, RPO
EEDATA

0x00

EEADR
STATUS, RPO
EECON1, EEPGD
EECON1, W\REN
0x55

EECON2

Oxaa

EECON2
EECON1, WR
EECON1, WREN
STATUS

SW TCH_DELAY

0x41
PCSI TI ON
CHARACTER, 0
LCD CHAR
GET_PS2
PS 2
STATUS, RP1
STATUS, RPO
EECONL, WR
DELAY_5MS
STATUS, RPO
EEDATA

RDS Encoder Project

LCD set on Line 2, character 9

ask for PS to be entered
set the | ower boundary
set the upper boundary

Set position, line 2 character 0

store in variable
Store in EEPROM
Make sure there is no other WRITE in progress

Wite data and destination

Sel ect bank 0

Set position, line 2 character 1

store in variable
Store in EEPROM

Make sure there is no other WRITE in progress

Hamed Haddadi

43

nmovl w
movwf
bsf
bcf
bsf
nmov| w
movwf
movl w
nmovwf
bsf
bcf
clrf

cal

movl w
nmovwf
nmovf
cal
cal
nmovwf
bsf
bsf
btfsc
cal
bcf
nmovwf
movl w
nmovwf
bsf
bcf
bsf
nmovl w
nmovwf
nmovl w
nmovwf
bsf
bcf
clrf

cal

nmovl w
movwf
nmovf
cal
cal
nmovwf
bsf
bsf
btfsc
cal
bcf
nmovwt
nmov| w
nmovwf
bsf
bcf
bsf
nmov| w
nmovwf
mov| w
nmovwf
bsf
bcf
clrf

cal

movl w
nmovwf
nmovf
cal
cal
nmovwf
bsf
bsf
btfsc
cal
bcf
nmovwf
nmovl w
nmovwf
bsf
bcf
bsf
movl w
nmovw
mov| w

0x01

EEADR
STATUS, RPO
EECON1, EEPGD
EECON1, WREN
0x55

EECON2

Oxaa

EECON2
EECONL, VR
EECON1, WREN
STATUS ; Select bank 0

SW TCH_DELAY

0x42 ; Set position, line 2 character 2
PGSI TI ON

CHARACTER, 0

LCD_CHAR

GET_PS3

PS 3 ; store in variable
STATUS, RP1 ; Store in EEPROM
STATUS, RPO

EECON1, WR ; Make sure there is no other WRITE in progress
DELAY_5MS

STATUS, RPO

EEDATA

0x02

EEADR

STATUS, RPO

EECON1, EEPGD

EECON1, W\REN

0x55

EECON2

Oxaa

EECON2

EECON1, VR

EECON1, WREN

STATUS ;. Sel ect bank 0

SW TCH_DELAY

0x43 ; Set position, line 2 character 3
POSI TI ON

CHARACTER, 0

LCD_CHAR

GET_PS4

PS 4 ; store in variable
STATUS, RP1 ; Store in EEPROM
STATUS, RPO

EECON1, WR ; Make sure there is no other WRITE in progress
DELAY_5MS

STATUS, RPO

EEDATA

0x03

EEADR

STATUS, RPO

EECON1, EEPGD

EECON1, WREN

0x55

EECON2

Oxaa

EECON2

EECON1, \R

EECONL, WREN

STATUS ;. Sel ect bank 0

SW TCH_DELAY

0x44 ; Set position, line 2 character 4
PGSI TI ON

CHARACTER, 0

LCD_CHAR

CGET_PS5

PS 5 ; store in variable

STATUS, RP1 ; Store in EEPROM

STATUS, RPO

EECON1, WR ; Make sure there is no other WRITE in progress
DELAY_5MS

STATUS, RPO

EEDATA

0x04

EEADR

STATUS, RPO

EECON1, EEPGD

EECON1, WREN

0x55

EECON2

Oxaa

RDS Encoder Project Hamed Haddadi

44

nmovwf EECON2

bsf EECON1, WR

bcf EECON1, WREN

clrf STATUS . Sel ect bank 0

call SW TCH_DELAY

movl w 0x45 ; Set position, line 2 character 5

movwf PCSI TI ON
nmovf CHARACTER, 0

cal | LCD_CHAR

cal | CET_PS6

movwt PS 6 ; store in variable

bsf STATUS, RP1 ; Store in EEPROM

bsf STATUS, RPO

btfsc EECONL, WR ; Make sure there is no other WRITE in progress
call DELAY_5MS

bcf STATUS, RPO

nmovwf EEDATA
movlw 0x05
nmovwf EEADR

bsf STATUS, RPO
bcf EECON1, EEPGD
bsf EECON1, WREN

movlw 0x55
movwf EECON2
nmovlw Oxaa
movwf EECON2

bsf EECON1, WR

bcf EECON1, WREN

clrf STATUS ; Select bank 0

call SW TCH_DELAY

movlw 0x46 ; Set position, line 2 character 6

movwf PCSI TI ON
nmovf CHARACTER, 0

cal | LCD_CHAR

cal | GET_PS7

nmovwt PS 7 ; store in variable

bsf STATUS, RP1 ; Store in EEPROM

bsf STATUS, RPO

btfsc EECONIL, WR ; Make sure there is no other WRITE in progress
call DELAY_5MS

bcf STATUS, RPO

nmovwf EEDATA
movlw 0x06
nmovwf EEADR

bsf STATUS, RPO
bcf EECON1, EEPGD
bsf EECON1, WREN

movlw 0x55
nmovwf EECON2
movlw Oxaa
nmovwf EECON2

bsf EECON1, \R

bcf EECONL, WREN

clrf STATUS ;. Sel ect bank 0

call SW TCH_DELAY

movlw 0x47 ; Set position, line 2 character 7

movwi PCSI TI ON
novf CHARACTER, 0

cal | LCD_CHAR

cal | CGET_PS8

movwf PS_8 , store in variable

bsf STATUS, RP1 ; Store in EEPROM

bsf STATUS, RPO

btfsc EECON1, WR ; Make sure there is no other WRITE in progress
call DELAY_5MS

bcf STATUS, RPO

nmovwf EEDATA
movlw 0x07
nmovwf EEADR

bsf STATUS, RPO
bcf EECON1, EEPGD
bsf EECON1, WREN

movlw 0x55
nmovwf EECON2
nmovlw Oxaa
movwf EECON2

bsf EECON1, WR

bef EECON1, WREN

clrf STATUS . Sel ect bank 0
return

RDS Encoder Project Hamed Haddadi

GET_PS1 bt f sc
cal |
btfsc
cal |
btfss
got o
return

GET_PS2 bt f sc
call
btfsc
cal |
btfss
got o
return

GET_PS3 bt f sc
call
btfsc
cal |
btfss
got o
return

GET_PS4 bt f sc
call
btfsc
cal |
btfss
goto
return

GET_PS5 bt f sc
cal |
btfsc
cal |
btfss
goto
return

GET_PS6 bt f sc
cal |
btfsc
cal |
btfss
goto
return

GET_PS7 bt f sc
cal |
btfsc
call
btfss
goto
return

GET_PS8 bt f sc
cal |
btfsc
call
btfss
goto
return

CHAR_UP
cal |
nmovf
call
nmovf
cal |
nmovf
cal |
return

check_max
nmovwf
nmovf
subwf
btfsc
got o
got o

SET2MAX
novf
return

| NCREMENT

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PSI

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS2

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS3

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS4

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS5

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS6

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR _DOWN

SW TCH_PORT, 2
GET_PS7

SW TCH_PORT, 0
CHAR UP

SW TCH_PORT, 1
CHAR DOWN

SW TCH_PORT, 2
GET_PS8

SW TCH_DELAY
POSI TI ON, O
SET_ADDR
CHARACTER, 0
check_nmax
CHARACTER, 0
LCD_CHAR

CHAR TEMP
MAX_CHAR, 0
CHAR TEMP, 0
STATUS, Z
SET2MAX

| NCREVENT

MAX_CHAR, 0

RDS Encoder Project

Increment Character if Switch O pressed

Decrement Character if Switch 1 pressed

set display position

nove character to Wregister
check if reached the upper boundary

it checks nor the upper character

store the character locally

now nmove MAX CHAR to Wregister

subtract the two files

I's the result zero?? then we reached maxi mum
keep the character as it is

if not reached the nmax,

Keep MAX_CHAR as the character of chioce

Hamed Haddadi

increment the character

i ncf
return

CHAR_DOWN

cal
nmovf
cal
novf
cal
nmovf
cal
return

check_mn
movwf
nmovf
subwf
btfsc
got o
goto

SET2M N
nmovf
return

DECREMENT
decf
return

RESTORE_PS

bsf
bcf
movl w
movwf
bsf
bcf
bsf
bcf
nmovf
clrf
movwf
cal

bsf
bcf
movl w
nmovwf
bsf
bcf
bsf
bcf
nmovf
clrf
nmovwf
cal

bsf
bcf
nmov| w
movwf
bsf
bcf
bsf
bcf
nmovf
clrf
movwf
cal

bsf
bcf
nmov| w
movwf
bsf
bcf
bsf
bcf
nmovf
clrf
movwf
cal

CHARACTER, 1

SW TCH_DELAY
POSI TI ON, 0
SET_ADDR
CHARACTER, 0
check_mn
CHARACTER, 0
LCD_CHAR

CHAR TEMP
M N_CHAR, 0
CHAR TEMP, 0
STATUS, Z
SET2M N
DECREMENT

M N_CHAR, 0

CHARACTER, 1

STATUS, RP1
STATUS, RPO
0x00

EEADR
STATUS, RPO

EECON1, EEPGD

EECONL, RD
STATUS, RPO
EEDATA, 0
STATUS

PS 1

SW TCH_DELAY

STATUS, RP1
STATUS, RPO
0x01

EEADR
STATUS, RPO

EECON1, EEPGD

EECONI, RD
STATUS, RPO
EEDATA, 0
STATUS

PS 2

SW TCH_DELAY

STATUS, RP1
STATUS, RPO
0x02

EEADR
STATUS, RPO

EECON1, EEPGD

EECONL, RD
STATUS, RPO
EEDATA, 0
STATUS

PS 3

SW TCH_DELAY

STATUS, RP1
STATUS, RPO
0x03

EEADR
STATUS, RPO

EECON1, EEPGD

EECON1, RD
STATUS, RPO
EEDATA, 0
STATUS

PS 4

SW TCH_DELAY

RDS Encoder Project

increment the character

set display position

nove character to Wregister
check if reached the |ower boundary

it checks nor the | ower character

store the character locally

now nove M N CHAR to Wregister

subtract the two files

Is the result zero?? then we reached m ni num
keep the character as it is

if not reached the min, decrement the character

Keep M N_CHAR as the character of chioce

decrenent the character

Restore the PS characters from EEPROM

Sel ect bank 0

Sel ect bank 0

Sel ect bank 0

Hamed Haddadi

47

bsf STATUS, RP1
bcf STATUS, RPO
nmovlw 0x04

movwf EEADR

bsf STATUS, RPO

bcf EECON1, EEPGD

bsf EECON1, RD

bcf STATUS, RPO

novf EEDATA, 0

clrf STATUS ;. Sel ect bank 0
movwf PS5

call SW TCH_DELAY

bsf STATUS, RP1

bcf STATUS, RPO

movlw 0x05
nmovwf EEADR

bsf STATUS, RPO

bcf EECON1, EEPGD

bsf EECON1, RD

bcf STATUS, RPO

novf EEDATA, 0

clrf STATUS ;. Sel ect bank 0
movwf PS 6

call SW TCH_DELAY

bsf STATUS, RP1

bcf STATUS, RPO

movlw 0x06
movwf EEADR

bsf STATUS, RPO

bcf EECON1, EEPGD

bsf EECON1, RD

bcf STATUS, RPO

novf EEDATA, 0

clrf STATUS ;. Sel ect bank 0
nmovwf PS 7

call SW TCH_DELAY

bsf STATUS, RP1

bcf STATUS, RPO

movlw 0x07
nmovwf EEADR

bsf STATUS, RPO
bcf EECON1, EEPGD
bsf EECON1, RD
bcf STATUS, RPO
nmovf EEDATA, 0
clrf STATUS ;. Sel ect bank 0
movwf PS 8
cal | SW TCH_DELAY
return

CRC_BUSY
mvliw ' C
call LCD_CHAR
mvlw 'R
call LCD_CHAR
mvliw 'C
cal | LCD_CHAR
moviw "'
cal | LCD_CHAR
mvliw 'C
call LCD_CHAR
movliw A
cal | LCD_CHAR
mvliw 'L
cal | LCD_CHAR
mvliw ' C
cal | LCD_CHAR
moviw U
cal | LCD_CHAR
mvliw 'L
cal | LCD_CHAR
movliw A
cal | LCD_CHAR
mvliw T
call LCD_CHAR
mvliw "1’
cal | LCD_CHAR
mvliw 'O
cal | LCD_CHAR

mviw N

RDS Encoder Project Hamed Haddadi

48

cal | LCD_CHAR

movliw .’
cal | LCD_CHAR
return
CRC_CALC
cal | CRC O
cal | CRC 1
cal | CRC 2
cal | CRC 3
return
CRC O
novf PS 1,0
mvwf CHAR HI GH
movf PS 2,0
movwf CHAR _LOW
cal l CRC_INIT
cal | CRC_GEN
novf CRC_ HGH,0
xorlw 0x01
mvwf CHCKWRD_0_HI GH
novf CRC_LOWO
xorlw Oxb4
movwf CHCKWRD_0_LOW
return
CRC 1
nmovf PS 3,0
movwf CHAR HI GH
novf PS 4,0
mvwf CHAR_LOW
cal | CRC_INIT
cal | CRC_GEN
nmovf CRC_HI GH 0
xorlw 0x01
mvwf CHCKWRD_1 HI GH
nmovf CRC_LOW O
xorlw Oxb4
mvwf CHCKWRD 1 LOW
return
CRC 2
nmovf PS 5,0
mvwf CHAR HI GH
novf PS 6,0
mvwf CHAR _LOW
cal l CRCINIT
cal | CRC_GEN
nmovf CRC_HI GH, 0
xorlw 0x01
movwf CHCKWRD 2_HI GH
nmovf CRC_LOW O
xorlw Oxb4
movwf CHCKWRD_2_LOW
return
CRC_3
movf PS 7,0
movwf CHAR HI GH
nmovf PS 8,0
mvwf CHAR_LOW
cal | CRC_INIT
cal | CRC_GEN
nmovf CRC HI GH 0
xorlw 0x01
mvwf CHCKWRD_3_HI GH
nmovf CRC_LOWO
xorlw Oxb4
mvwf CHCKWRD_3_LOW
return
CRC INIT
clrf CHAR _BUF
bcf STATUS, C
rlf CHAR _LOW 1
rlf CHAR HI GH, 1
rlf CHAR_BUF, 1
bcf STATUS, C

RDS Encoder Project

CheckWord cal cul ation for the PS

PS 1 and PS 2, for first transni ssion group
PS_3 and PS 4, for second transnission group
PS 5 and PS 6, for third transni ssion group
PS_ 7 and PS_ 8, for fourth transnission group

Cal cul ate the checkword for the first PS block
nove PS_1 to the upper working register
nmove PS_2 to the |ower working register

Initialise the registers
Cal cul ate CRC

Load Wwith CRC upper part
Add upper part of offset D
Store in Checkword upper part
Load Wwi th CRC | ower part
Add | ower part of offset D
Store in Checkword | ower part

Cal cul ate the checkword for the second PS bl ock
nove PS_3 to the upper working register
nmove PS_4 to the | ower working register

Initialise the registers
Cal cul ate CRC

Load Wwith CRC upper part
Add upper part of offset D
Store in Checkword upper part
Load Wwith CRC | ower part
Add | ower part of offset D
Store in Checkword |ower part

Cal cul ate the checkword for the third PS bl ock
nove PS_5 to the upper working register
nmove PS 6 to the | ower working register

Initialise the registers
Cal cul ate CRC

Load Wwith CRC upper part
Add upper part of offset D
Store 1 n Checkword upper part
Load Wwith CRC | ower part
Add | ower part of offset D
Store in Checkword |ower part

Cal cul ate the checkword for the fourth PS bl ock
nmove PS_7 to the upper working register
nove PS 8 to the | ower working register

Initialise the registers
Cal cul ate CRC

Load Wwith CRC upper part
Add upper part of offset D
Store in Checkword upper part
Load Wwith CRC | ower part
Add | ower part of offset D
Store in Checkword | ower part

Initialise the registers

rotate left twice, through carry,

so that the 107X factor can correctly

be inplenmented, i.e. by adding an 8bit

all Os register to the end of the data,
and shifting to left twice to have another
2 obits.

Hamed Haddadi

49

rlf CHAR LOW 1

rlf CHAR HIGH, 1

rlf CHAR BUF, 1

movlw 0x10 ;16 left shifts, for the CRC cal cul ation
novwf | TERATI ONS

nmovf CHAR_BUF, 0 ; shifting all to the right place

movwf CRC_HI GH

novf CHAR HIGH, 0

movwf CRC_LOW

novf CHAR_LOW 0

movwf CRC_BUF1

movl w 0x00 ; adding the last 8 zero's
movwf CRC_BUF2

novliw 0x05 ; Storing the g(x) polynomial in registers
movwf GXPCLY_HI GH

movlw 0xb9

movwf GXPOLY_LOW

return
CRC_CEN ; CRC generator routine
bcf STATUS, C ; clear the carry bit
rif CRC_BUF2, 1 ; left shift all the data by one bit,
rlf CRC_BUF1, 1 ; using carry flag, so the carry 1 or 0
rlf CRC_LOW 1 ; Will go to the LSB of next byte
rif CRC_ HGH 1
btfsc CRC H CH, 2 ; is the last bit a 1?
cal | DO _XOR if yes, XOR the working registers with g(x)

decfsz | TERATI ONS, 1
goto CRC_GEN
return

Decrenment iterations, nore bits left?
if yes, do another bi t

DO _XOR ; Modulo 2 division with the g(x)
nmovf GXPOLY_LOW 0
xor wf CRC_ LOW 1
movf GXPOLY_HI GH, 0
xor wf CRC HIGH 1
return

TRANSM T_DI SPLAY
s

movl w
cal | LCD_CHAR
mvliw 'R
call LCD_CHAR
movliw A
cal | LCD_CHAR
mvliw ‘N
cal | LCD_CHAR
movliw 'S
call LCD_CHAR
mviw ‘M
call LCD_CHAR
mvlw "1’
cal | LCD_CHAR
mviw 'T
cal | LCD_CHAR
mvlw T
call LCD_CHAR
mvliw "1’
call LCD_CHAR
mvliw N
cal | LCD_CHAR
mvlw 'G
cal | LCD_CHAR
return

DI SPLAY_PS ; Displays the currently transmtted PS
movf PS 1,0
cal | LCD_CHAR
nmovf PS 2,0
cal | LCD_CHAR
nmovf PS 3,0
cal | LCD_CHAR
movf PS 4,0
cal | LCD_CHAR
nmovf PS 5,0
call LCD_CHAR
movf PS 6,0
cal | LCD_CHAR
novf PS 7,0
cal | LCD_CHAR

novf PS 8,0

RDS Encoder Project Hamed Haddadi

cal |

return

TRANSM T
cal |
cal |
cal |
cal |
got o

TRANSM T_Q0
nmovl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovw
swapf

rlf
cal l

movl w
nmovwf
nmovf
nmovwf
cal |

nmov| w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
movwf
swapf
rlf
rlf
cal |

nmovl w
nmovwf
nmovf
nmovwf
call

movl w
movwf
nmovf
movwf
cal |

mov| w
movwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
movwt
swapf
rlf
rlf
cal |

LCD_CHAR

Transmt the RDS data-stream

TRANSM T_Q0 ; Goup O
TRANSM T_GL ; Goup 1
TRANSM T_®& ; Goup 2
TRANSM T_G&3 ; Goup 3
TRANSM T ; Loop forever
; Transmt the first group, with PS_.1 & PS 2
0x08 ; Send the top byte of PI
| TERATI ONS
Pl _H CGH O
TRX_BUF
TRANSM T_BUF_DATA
0x08 ; Send the | ower bye of PI
| TERATI ONS
Pl _LOWO
TRX_BUF
TRANSM T_BUF_DATA
0x02 ; Send top two bits of PI checkword offset A
| TERATI ONS
Pl _CHCK1_HI GH, 0 ; Move the whole byte
TRX_BUF
TRX_BUF, 1 ;. Swap ni bbl es
TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA
0x08 ; Send | ower byte of PI checkword offset A
| TERATI ONS
Pl _CHCK1_LOW O
TRX_BUF
TRANSM T_BUF_DATA
0x08 ; Send upper part of block 2
| TERATI ONS
BLCK2_OHI GH, 0
TRX_BUF
TRANSM T_BUF_DATA
0x08 ; Send | ower byte of block 2
| TERATI ONS
BLCK2_OLOW 0
TRX_BUF
TRANSM T_BUF_DATA
0x02 ; Send the top two bits of Block 2 checkword
| TERATI ONS
BLCK2_OCHK_HI GH, 0 ; Move the whole byte
TRX_BUF
TRX_BUF, 1 ; Swap ni bbl es
TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA
0x08 ; Send the | ower byte of block2 checkword
| TERATI ONS
BLCK2_OCHK_LOW 0
TRX_BUF
TRANSM T_BUF_DATA
0x08 ; Send the top byte of PI
| TERATI ONS
PI_H CH O
TRX_BUF
TRANSM T_BUF_DATA
0x08 ; Send the | ower bye of PI
| TERATI ONS
Pl _LOWO
TRX_BUF
TRANSM T_BUF_DATA
0x02 ; Send top two bits of Pl checkword offset C
| TERATI ONS
Pl _CHCK3_HI GH, 0 ; Move the whole byte
TRX_BUF
TRX_BUF, 1 ; Swap ni bbl es
TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation

TRANSM T_BUF_DATA

RDS Encoder Project Hamed Haddadi

51

movl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovw
cal |

movl w
nmovwf
nmovf
movwf
cal |

movl w
movwf
nmovf
nmovw
swapf
rlf
rlf
call

movl w
nmovwf
nmovf
nmovwf
cal |

return

TRANSM T_GL
movl w
movwf
nmovf
nmovwf
cal |

movl w
movwf
nmovf
movwf
cal |

movl w
nmovwf
nmovf
nmovw
swapf
rlf
rlf
call

nmovl w
nmovwf
nmovf
nmovwf
call

mov| w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
novf
movwf
cal |

movl w
nmovwf
nmovf
nmovwf
swapf
rlf
rlf
cal |

nmovl w
movwf
nmovf
nmovw
cal |

0x08 ; Send | ower byte of PI checkword offset C
| TERATI ONS

Pl _CHCK3_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_1
| TERATI ONS

PS 1,0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_2
| TERATI ONS

PS 2,0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of PS checkword

| TERATI ONS

CHCKWRD_0_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ;. of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PS checkword
| TERATI ONS

CHCKWRD_0_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

; Transmit the first group, with PS 3 & PS 4
0x08 ; Send the top byte of PI
| TERATI ONS
PI_H GH 0
TRX_BUF
TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of PI
| TERATI ONS

Pl _LOWO

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send top two bits of Pl checkword offset A
| TERATI ONS

Pl _CHCK1_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ;. of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword offset A
| TERATI ONS

Pl _CHCK1_LOW O

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send upper part of block 2
| TERATI ONS

BLCK2_1HI GH, 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send | ower byte of block 2
| TERATI ONS

BLCK2_1LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of Block 2 checkword
| TERATI ONS

BLCK2_1CHK HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send the | ower byte of block2 checkword
| TERATI ONS

BLCK2_1CHK_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

RDS Encoder Project Hamed Haddadi 52

movl w
nmovwf
nmovf
movw
cal |

movl w
nmovwf
nmovf
nmovwf
call

nmov| w
nmovwf
nmovf
nmovw
swapf
rlf
rlf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovw
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
movwf
cal |

nmovl w
nmovwf
nmovf
nmovw
swapf
rlf
rlf
call

movl w
nmovwf
nmovf
nmovwf
call

return

TRANSM T_@®&
movl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

nmovl w
movw
nmovf
nmovwf
swapf

rlf
cal |

movl w
nmovwf
nmovf
nmovwf
call

nmov| w
nmovwt
nmovf
nmovwf

0x08 ; Send the top byte of PI
| TERATI ONS

PI_H GH 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of PI
| TERATI ONS

Pl _LOWO

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send top two bits of Pl checkword offset C
| TERATI ONS

Pl _CHCK3_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword offset C
| TERATI ONS

Pl _CHCK3_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_1
| TERATI ONS

PS 3,0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_2
| TERATI ONS

PS 4,0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of PS checkword

| TERATI ONS

CHCKWRD_1_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ;. of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PS checkword
| TERATI ONS

CHCKWRD 1 _LOW 0

TRX_BUF

TRANSM T_BUF_DATA

; Transmt the first group, with PS_.1 & PS_2
0x08 ; Send the top byte of PI
| TERATI ONS
Pl_H GH 0
TRX_BUF
TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of PI
| TERATI ONS

Pl _LOWN O

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send top two bits of PI checkword offset A
| TERATI ONS

Pl _CHCK1_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword offset A
| TERATI ONS

Pl _CHCK1_LOW O

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send upper part of block 2
| TERATI ONS

BLCK2_2HI GH, 0

TRX_BUF

RDS Encoder Project Hamed Haddadi 53

cal |

mov| w
nmovwf
nmovf
nmovwf
cal |

mov| w
movwf
nmovf
nmovwf
swapf
rlf
rlf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

nmovl w
nmovwf
nmovf
nmovwf
call

movl w
nmovwf
nmovf
nmovwf
call

movl w
nmovwf
nmovf
nmovwf
swapf

rlf
cal |

nmov| w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

nmovl w
nmovwf
nmovf
nmovwf
cal |

nmovl w
nmovwf
nmovf
nmovw
swapf
rlf
rlf
call

nmovl w
nmovwf
nmovf
nmovwf
cal |

return

TRANSM T_G&3
nmov| w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf

TRANSM T_BUF_DATA

0x08 ; Send | ower byte of block 2
| TERATI ONS

BLCK2_2LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of Block 2 checkword
| TERATI ONS

BLCK2_2CHK _HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send the | ower byte of block2 checkword
| TERATI ONS

BLCK2_2CHK_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send the top byte of PI
| TERATI ONS

Pl _HI GH, 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of Pl
| TERATI ONS

Pl _LOWO

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send top two bits of Pl checkword offset C
| TERATI ONS

Pl _CHCK3_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ;. Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ;. of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword offset C
| TERATI ONS

Pl _CHCK3_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 . Send PS_ 1
| TERATI ONS

PS 5,0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_2
| TERATI ONS

PS 6,0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of PS checkword

| TERATI ONS

CHCKWRD_2_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ;. Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PS checkword

TRANSM T_BUF_DATA

; Transmit the first group, with PS_.1 & PS 2
0x08 ; Send the top byte of PI
| TERATI ONS
PI_H GH 0
TRX_BUF
TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of PI
| TERATI ONS
PI_LOWO

RDS Encoder Project Hamed Haddadi 54

movwf
cal |

movl w
movwf
nmovf
movwf
swapf
rlf
rlf
cal |

movl w
nmovwf
nmovf
movwf
cal |

movl w
movwf
nmovf
nmovwf
call

nmov| w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
movwf
swapf
rlf
rlf
cal |

movl w
nmovwf
nmovf
nmovwf
cal |

nmovl w
nmovwf
nmovf
nmovwf
cal |

movl w
nmovwf
nmovf
nmovwf
call

nmovl w
nmovwf
nmovf
nmovw
swapf
rlf
rlf
cal |

mov| w
movwf
nmovf
movwf
cal |

movl w
nmovwf
nmovf
movwf
cal |

nmovl w
nmovw
nmovf
movw
cal |

nmovl w
movwf
nmovf
nmovw
swapf

TRX_BUF
TRANSM T_BUF_DATA

0x02 ; Send top two bits of PI checkword offset A
| TERATI ONS

Pl _CHCK1_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword of fset A
| TERATI ONS

Pl _CHCK1_LOW O

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send upper part of block 2
| TERATI ONS

BLCK2_3HI GH, 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send | ower byte of block 2
| TERATI ONS

BLCK2_3LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of Block 2 checkword
| TERATI ONS

BLCK2_3CHK_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ;. Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send the | ower byte of block2 checkword
| TERATI ONS

BLCK2_3CHK_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send the top byte of PI
| TERATI ONS

Pl _HI GH, 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send the | ower bye of PI
| TERATI ONS

Pl _LOW O

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send top two bits of Pl checkword offset C
| TERATI ONS

Pl _CHCK3_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

TRX_BUF, 1 ; Rotate left twice, to bring the first bit
TRX_BUF, 1 ; of the two bits to the MSB | ocation
TRANSM T_BUF_DATA

0x08 ; Send | ower byte of PI checkword offset C
| TERATI ONS

Pl _CHCK3_LOW 0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_1
| TERATI ONS

PS 7,0

TRX_BUF

TRANSM T_BUF_DATA

0x08 ; Send PS_2
| TERATI ONS

PS 8,0

TRX_BUF

TRANSM T_BUF_DATA

0x02 ; Send the top two bits of PS checkword
| TERATI ONS

CHCKWRD_3_HI GH, 0 ; Move the whole byte

TRX_BUF

TRX_BUF, 1 ; Swap ni bbl es

RDS Encoder Project Hamed Haddadi 55

rlf TRX_BUF, 1 ; Rotate left twice, to bring the first bit
rlf TRX_BUF, 1 ; of the two bits to the MSB | ocation

call TRANSM T_BUF_DATA

movlw 0x08 ; Send | ower byte of PS checkword

movwf | TERATI ONS

nmovf CHCKWRD_3_LOW 0
movwf TRX_BUF

call TRANSM T_BUF_DATA

return

TRANSM T_BUF_DATA ; Transmit the data byte held in the buffer
rlf TRX_BUF, 1 . Rotate left once, in itself
btfss STATUS, C ; Test the carry flag val ue

call TRANSM T_0 is carry 0? transmt a O
btfsc STATUS, C
call TRANSM T_1 ; Is carry 1? transmit a 1
decfsz | TERATIONS, 1 ; Decrenent iteration until it reaches 0
got o TRANSM T_BUF_DAT.
return

TRANSM T_0

; cal | DELAY_125US
btfss RDS_PORT, S| GNAL ; I's 1187.5 high?
goto TRANSM T_0O ; No? then loop until it goes high
bcf RDS_PORT, RDS_DATA ; Clear the port bit, 0O will be nodul ated
return

TRANSM T_1

; call DELAY_125US
btfss RDS_PORT, S| GNAL ; 1's 1187.5 high?
goto TRANSM T_1 ; No? then loop until it goes high
bsf RDS_PORT, RDS_DATA ; Set the port bit, 1 will be nodul ated
return

LCD_CHAR

Sends character to LCD
Requi red character nust be in W

’
’
’
’
’

LCD_CHAR
movwf LCD_TEMP ; Character to be sent is in W
cal l LCDBUSY ; Wait for LCD to be ready
bcf LCD CTRL, RW ; Set LCD in read node
bsf LCD _CTRL, RS ; Set LCD in data node
bsf LCD CTRL, E ; LCD E-line High
novf LCD_TEMP, W
movwf LCD_DATA : Send data to LCD
bcf LCD_CTRL, E ; LCD E-line Low
return

LCD_CMN\D

Requi red command nust be in W

Sends conmmand to LCD

LCD_CMND
nmovwf LCD_TEMP
cal l LCDBUSY ; Wait for LCD to be ready
bcf LCD_CTRL, RS ; Set LCD in read node
bcf LCD_CTRL, RW ; Set LCD in conmand node
bsf LCD _CTRL, E ; LCD E-line High
novf LCD_TEMP, W
nmovwt LCD_DATA ; Send data to LCD
bcf LCD _CTRL, E ; LCD E-line Low
return

LCDBUSY

Ret urns when LCD busy-flag is inactive
T K

LCDBUSY
bsf STATUS, RPO ; Sel ect Register page 1
movlw OxFF ; Set PORTB for input
nmovwf TRl SB
bcf STATUS, RPO ; Sel ect Register page 0
bcf LCD CTRL, RS ; Set LCD for command nopde
bsf LCD CTRL, RW ; Setup to read busy flag
bsf LCD CTRL, E ; LCD E-line High
nmovf LCD_DATA, W ; Read busy flag + DDram address
bcf LCD CTRL, E : LCD E-line Low

RDS Encoder Project Hamed Haddadi

56

andlw 0x80 ; Check Busy flag, Hi gh = Busy
btfss STATUS, Z

got o LCDBUSY ; Loop back if busy

bcf LCD_CTRL, RW

bsf STATUS, RPO ; Sel ect Register page 1
novliw 0x00

nmovwt TRI SB ; Set PORTB for output
bcf I NTCON, RBIF

bcf STATUS, RPO ; Sel ect Register page 0
return

B R R R
,
*ok ok ok ok ok ok ok ok ok ok

;¥ SET_ADDR
*

;* sets the start address in LCD DDRAM for witing characters to the LCD
*

;* Load the | cd address you wish to wite to into the wregister before calling
routine *

B R R R R
,
*ok ok ok ok ok ok ok ok ok ok

SET_ADDR
iorlw 0x80 ; conmbi ne address(a) in wto give laaa aaaa
cal | LCD_CWVND ;send byte in wto LCD data lines
cal l DELAY_125US ;delay 125 microsecond
return

B]

. LONG DELAY
; Uses a very long delay to allow the user to see the data on the LCD

B R R R e]

LONG_DELAY
movlw Ox4f ; Decimal value to give a |ong del ay
movwf CNT_DELAY3

rep_3 call DELAY_30Ms

decfsz CNT_DELAY3, 1

got o rep_3

return
IR E R R E R R R R R R R EREEEEEEEREEREEREESEES
; SW TCH_DELAY
; Uses a long delay to allow the switch to over-cone debounce probl ens

B R R]

SW TCH_DELAY
movlw 0x20 ; Decimal value to give a |ong del ay
movwf CNT_DELAY3

rep_4 call DELAY_30MS

decfsz OCNT_DELAY3, 1
got o rep_4
return

B R R R
’
*ok ok ok ok ok ok ok ok ok ok

; * DELAY_125US
*

;* uses repeated instruction cycles to create approxi mate 125 microsecond del ay
*

;* using a 4Mhz clock on the pic.(42x3 cycles of 1us)
*

B R R R R R SRR
*ok ok ok ok ok ok ok ok ok ok

DELAY_125US

movlw US125 ; decimal value 42 | oaded into w register

movwf CNT_DELAY1 ; nmove 42 into cnt_del ayl register
repeat decfsz OCNT_DELAY1, 1 ; decrease count by 1 and check if zero (1 instruction
cycle)

goto repeat ; decfsz will skip this if count was zero

return

B R R R Y
’
Kk kkkokkokkokok

. * DELAY_5ns
*

;* uses repeated instruction cycles to create approxi mate 5ns del ay (39x130x1 cycle of
1lus)
;* using a 4Mhz clock on the pic. (130 because 125+5 cycles fromthis routine)

*

B R R
,
*ok ok ok ok ok ok ok ok ok ok

DELAY_5Ms
movlw Ms5 ;deci mal val ue 39 | oaded into w register
movwf CNT_DELAY2 ;nmove 39 into count2 register

RDS Encoder Project Hamed Haddadi 57

rep2 cal | DELAY_125US ;call routine for 125 microsecond del ay(2 instruction
cycle)

decfsz CNT_DELAY2, F ;decrease count2 by 1 and check if zero (1 instruction
cycle)

goto rep2 ;decfsz will skip this if count2 was zero(2 instruction
cycle)

return

B R R R

1
kkkkkkkokkkok

;* END OF DELAY_5ns
*

B R R R
’
kkkkkkkkkkok

B R R R

’
*ok ok ok ok ok ok ok ok ok ok

;* DELAY_30mns
*

;* uses repeated instruction cycles to create approxi mate 30ns delay (231x130x1 cycle
of 1us) *
;* using a 4Mhz clock on the pic. (130 because 125+5 cycles fromthis routine)

*

B R R R R

,
*ok ok ok ok ok ok ok ok ok ok

DELAY_30M5
movliw MS30 ; decimal value 231 | oaded into w register
movwf CNT_DELAY2 ; move 240 into cnt_del ay2 register
rep_2 call DELAY_125US ; call routine for 125 m crosecond del ay
decfsz CNT_DELAY2, 1 ; decrease count2 by 1 and check if zero (1 instruction
cycle)
goto rep_2 ; decfsz will skip this if count2 was zero
return
LCD CLEAR

Clears display and returns cursor to home position (upper-left corner).

’
’
’
’
’

LCD CLEAR

movliw 0x01 ; Move the value for |cd clear conmand
cal | LCD_CWVND

retlw 0x00

END

RDS Encoder Project Hamed Haddadi 58

B. Bi-Phase.asm

R R]

Fi | enane: bi phase. asm
05/ 03/ 03

Dat e

hhaddad

E I

B R R RS

; Aut hor :
: Not es:

To generate bi phase synbols fromport B

*
*

B R R R R

list

__CONFIG

p=16c622 ;
#i ncl ude <pl6c622.inc> ;

list directive to define processor
processor specific variable definitions

_CP_OFF & WDT_OFF & BODEN ON & PWRTE ON & _XT_OSC

;***** VARI ABLE DEFI NI Tl ONS**#* ks k ki sk kk kkk k kA XK A XK AKX KKK KKK A XK AX KA KK XK KX K
1

CLK11875
CLK2375
RDS

PULSEHI GH
PULSEDOWN

Us51
CNT_DELAY1
MEMORY

EQU

EQU
EQU

EQU
EQU
EQU

2
EQU 3

4
6

0x21 ;
0x22 ;
0x23

tenporary count

value to give a 51 microsecond in delay |oop
regi ster for 5lus delay routine

R R R
’

org

RESET goto

MAI N

i nputs

generate

pol 111875

si gnal _pul se

pol | 2375

cl ear _pul se

RDS Encoder Project

0x00
MAI'N

clrf
bsf
clrf
clrf
bsf
nmovl w
nmovwf

clrf

cal |
cal |
call
cal |
cal |
call
cal |
cal |
call
cal |
cal |
cal |
cal |
cal |
cal |
cal |
cal |
cal |
cal |
call

goto

btfss
goto
return

btfss
goto
goto

bt fss
goto
return

btfsc

STATUS
STATUS, RPO
TRI SA
TRI SB
OPTI ON_REG, NOT_RBPU
0xOE
TRI SB

STATUS

pol 1 11875

si gnal _pul se
DELAY_51US ;
DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

pol | 2375

cl ear _pul se

DELAY_51US ;
DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

DELAY_51US

generate

PORTB, CLK11875
pol 1 11875

PORTB, RDS
PULSE_DOWN
PULSE_HI GH

PORTB, CLK2375
pol | 2375

MEMORY, O

Hamed Haddadi

Do initialization
; Select Bank 1

Port A as output to save power

PORT B i s output

Di sabl e week Pull ups

Decl are pins 0& of port B as

To by-pass the clock's high-signa

To by-pass the clock's high-signa

59

Sel ect bank 0

goto
goto

PULSE_H GH
bsf
cal |
bcf
bsf
return

PULSE_DOWN
bsf
cal |
bcf
bcf
return

PULSE_DOWN
PULSE_HI GH

PORTB, PULSEH GH

DELAY_51US
PORTB, PULSEH GH
MEMCRY, 0

PORTB, PULSEDOWN

DELAY_51US
PORTB, PULSEDOWN
MEMORY, O

B R R R R R R R
’

;* DELAY_51US

*

;* uses repeated instruction cycles to create approxi mate 51 m crosecond del ay*
;* using a 10Mhz clock on the pic.(42x3 cycles of 0.4us)

B R R R R R R R
’

DELAY_51US
movlw US51 ; decimal value 42 | oaded into w register
nmovwf CNT_DELAY1 ; nmove 42 into cnt_del ayl register
repeat decfsz CNT_DELAY1, 1 ; decrease count by 1 and check if zero (1 instruction
cycle)
goto repeat ; decfsz will skip this if count was zero
return
END ; directive 'end of prograni

RDS Encoder Project

Hamed Haddadi

60

C. Data source PCB

[+
[+
[+
¢
i
i
| &
| &
o
e

RDS Encoder Project Hamed Haddadi 61

D. Project time plan

T |i68ep02 |14 OciGz |11 Nov 02 |09 Dec 02 |06 Jen 03 |03 Feb 03|03 Mar 03
10 | 8 |Task Name Duration Start Finish Wls [T IM]F]T]S | W]SITIMIFITIS] w'ITI'IT_ITITl
T [Update knowiedge-bass Tdays| ThuZG/08/02 | Sun 28)08/02
2 . First Report Zdays FriZRogn2 | Sun 20000002 E
3 | Fregramming the PIC Tidays SunZW0S/02 0 Tue 0700103 E
4 W | Studying the hardware iddays Tue OBA0M02 Sun 27010002 E
. | Modeling the creu, Promies | 14 days| Men 2110002 Thu 0711102 —
& | .| Secand Repot Tdays | ThuO2O1/03 | Sun 1200103 E
T | Component purchasing Tdays Tue ZUO103 | Wed 28101103 =
a | System Integration ZZdays | Mon 270103 Tue 2502003 E
g | PGB Design Tdays| Mon 1702003 Tue 2502003 E
10 |/ Hardware insgration Sdays| Tue 250203 Mon 03)03/03 =
11 | Testing the System 14 days MonOX03/03 | Thu 200303 E_
Task [] woedupTesk [| ExtemalTasks |
Project RDS ENCODER Prograse N Foiled Up Misstone > Project Summany ([
Dotk St SSMISHE Milestone & Rolled Up Progres: IS Group By Summary
Summary Pp—
Projecttime plan

RDS Encoder Project

Hamed Haddadi

62

9. References

. United States RBDS Standard, April 9, 1998

. www.microchip.com for MPLAB IDE use

. Microchip PIC 16F87X Data Sheet

. Microchip PICmicro Mid-Range MCU Family reference Manual
. RDS: The Radio Data System: Dietmar Kopitz, Bev Marks
. How to use intelligent LCDs: Julyan Ilet

. Hitachi HD44780 LCD Controller/Driver manual

. Microchip AN587 Interfacing PICmicro to an LCD module
. TRIMOD LCD Specification

9. Microchip EEPROM Memory Programming specification
10. A Painless guide to CRC error detection algorithm: Ross Williams
11. Microchip AN730 CRC Generating and Checking

12. RDS Encoder Project: Tim Shaw (of EE)

13. RDS Encoder Project: Richard Koch (of EE)

14. HC-49 Quarts Crystal data sheet

15. AV Series Push Button Switches data sheet

16: Basic Communication Theory: John Pearson

17: CRC, Easier said than done: Michael Barr

18: www.farnell.co.uk

19: Electronic circuits III: Paul V Brennan, EEE

20: Digital Circuits: Chris Pitt, EEE

21: Microchip PIC16C622 datasheet

0N nNh bW~

Author:
Hamed Haddadi, Department of Electronics & Electrical Engineering UCL, Torrington Place,
London WCIE 7JE h.haddadi@ucl.ac.uk

12 Lionel House, 370 Portobello Rd, London W10 5RP hamedhaddadi@hotmail.com

RDS Encoder Project Hamed Haddadi 63

10. Component datasheets

RDS Encoder Project Hamed Haddadi

64

