

UNIVERSITY COLLEGE LONDON

Department of Electronics and Electrical Engineering

RDS Encoder

Hamed Haddadi

Supervisor: Dr. Paul Brennan

Final Report

March 2003

RDS Encoder Project Hamed Haddadi 2

Abstract

Radio Data Systems was development started 20 years ago in the European Broadcast Union,
EBU. The developers aimed to ease the process of tuning in to a station, especially as the
number of broadcasters was increasing and use of alternative frequencies to avoid interference
would make it difficult to keep tuned to a certain station. The use of RDS would overcome
this problem and will also enable the transmission of the Programme Service name (PS),
traffic information and other useful features which will make the FM receivers more user-
friendly.

University College London has got its own radio station, RARE FM, which requires an RDS
encoder to enable them to transmit the name of the station. Commercial RDS encoders are
relatively expensive and complex and they need a dedicated PC and network connection to
enable the other features such as traffic information, which is not required by Rare FM. The
purpose of this project is to build an isolated RDS encoder which will not need a PC and is
simple enough to be used by a non-technical person in the station.

Some work has already been done last year to develop the encoder using analogue techniques.
However any changes to the station name will require modification of components and
switches and valid data has not been prepared for encoding and modulation alongside the FM
carrier. The technique pursued in this project is using a micro-controller to control the data
and bit-stream conversion and validations. This makes the system easier to operate and make
it easier to change the settings of the transmitted data-stream if needed in future.

This report contains the background research and knowledge taken from the RDS standard.
Objectives of the project and the approaches are also discussed within the appropriate section.
The work done and the achievements of the project are also explained, as well as the time and
budget planning and goals.

One of the major obstacles met in previous projects has been providing data and transmitting
the correct information at the right time. In this project the data processing part has been
investigated and planned first. This made sure that the new tasks are done before going
through the development and improvement of previous attempts to make an RDS Encoder.

Acknowledgements:
The author would like to acknowledge the work done By Timothy Shaw and Richard Koch as
their project in development of the RDS encoder and appreciate their valuable advice and
ideas given prior to start of the project. Many thanks are also forwarded to Dr. Paul Brennan
of the department for his help and supervision from the start of the research into the project
and Gerald McBrearty and Andrew Moss of the EE laboratory for their valuable advice and
support during the software development and hardware realisation of the project.

RDS Encoder Project Hamed Haddadi 3

CONTENTS
 Page

1. An introduction to RDS 5

2. Physical Layer of RDS system 6
 2.1. Subcarrier frequency 6
 2.2. Subcarrier phase 6
 2.3. Subcarrier level 8
 2.4. Method of modulation 8
 2.5. Clock frequency and data rate 8
 2.6. Differential coding 8
 2.7. Data channel spectrum shaping 9

3. Base-band coding of the RDS system 12
 3.1. Base-band coding structure 12
 3.2. Order of bit transmission 12
 3.3. Error protection 13
 3.4. Message format 14

4. Project objectives and strategies 16
 4.1. Providing frame data 16
 4.2. Data input method for PS 17
 4.3. Data display and user interface 18
 4.4 Data processing and input/output control 20
 4.5. CRC calculation 22
 4.6 Bit-stream output 24

5. Software development tools 26
 5.1. MPLAB Integrated Development Environment 26
 5.2. Proteus Virtual Circuit Modelling 26
 5.3. Orcad PSpice 27
 5.4. Easy PC 27

6. RDS encoder block circuits 28
 6.1. Radio data message source 28

6.2. Differential encoder 29
 6.3. Bi-phase symbol generator 29
 6.4. Shaping Filter 31
 6.5. 57 KHz signal generator 31
 6.6. Divide-by-24 counter 32
 6.7. Divide-by-2 counter 34
 6.8. Modulation 34
 6.9 Power supply 36

7. Conclusions and future work 37
 7.1 Objectives and achievements 37
 7.2 Future work and improvements 37
8. Appendix 38
9. References 63
10. Component datasheets 64

RDS Encoder Project Hamed Haddadi 4

List of Figure and Captions

 Page

Figure 1: FM spectrum 6
Figure 2: Block diagram of RDS encoder at the transmitter 7
Figure 3: Block diagram of a typical RDS receiver 7
Figure 4: Amplitude response of specified transmitter/ receiver data-shaping filter 10
Figure 5: Amplitude response of combined transmitter/ receiver data-shaping filter 10
Figure 6: Spectrum of bi-phase coded radio-data signals 11
Figure 7: Time-function of a single bi-phase symbol 11
Figure 8: 57 kHz radio-data signals 11
Figure 9: Structure of the base-band coding 12
Figure 10: Message format and addressing 12
Figure 11: Basic tuning and switching information – Type 0B group 14
Figure 12: PI structure 16
Figure 13: Data input via push-button switches 17
Figure 14: Pin-out diagram of PIC16F877 micro-processor 21
Figure 15: Clocking the PIC 21
Figure 16: RDS encoder data input and user interface 22
Figure 17: CRC generator circuit 22
Figure 18: Modulo2 division 23
Figure 19: Modulo2 division using one register 23
Figure 20: MPLAB IDE software 26
Figure 21: Proteus VSM software interface 27
Figure 22: Data message source connected on breadboard 28
Figure 23: PCB design for the data message source block 28
Figure 24: Differential encoder 29
Figure 25: PIC16C622 for bi-phase symbol generation 30
Figure 26: Inverting amplifier for negative pulses 30
Figure 27: Shaping filter 31
Figure 28: Divide-by-3 waveform 31
Figure 29: PLL and divide-by-3 circuit 32
Figure 30: PLL waveform 32
Figure 31: Divide-by-24 counter 33
Figure 32: Divide-by-24 waveform 33
Figure 33: PLL and divide-by-24 circuits 33
Figure 34: Divide-by-2 counter 34
Figure 35: Divide-by-2 waveform 34
Figure 36: Square-to-sinusoidal wave converter 34
Figure 37: Square-to-sinusoidal waveform 35
Figure 38: Modulator 35
Figure 39: Modulator waveform 35
Figure 40: Modulator circuit 36
Figure 41: Positive voltage regulator 36
Figure 42: Voltage inverter 36

RDS Encoder Project Hamed Haddadi 5

1. An introduction to RDS

The use of more frequencies for the radio programmes in the VHF/FM range makes it
difficult for an in-car radio to remain tuned to the desired programme as the stations have to
constantly change frequencies in different regions to avoid interference. RDS employ an FM
subcarrier to transmit steady stream traffic information and the station name. This is a real
advantage over conventional radio systems as the sales of FM in-car radio systems were not
growing at the desired rate. The RDS system allows the station to transmit its Programme
Service Name (PS), an eight-character sequence identifying the station. This makes tuning to
a station by frequency redundant. Another important addition is the PI code. This code allows
receivers to automatically switch to the best available frequency for a particular station,
especially useful on long car journeys where frequencies for the same station change to avoid
interference patterns.

Following a long period of systems development in the 1970s and early 1980s, RDS is now
implemented all over Western Europe, and in several other regions of the world. This was
after the improvement of the in-car entertainment system developments. RDS had major
advantages for the traveller. RDS can provide traffic information and filter out the
unnecessary information when travelling in a specific route by recognizing the location codes.
Nowadays RDS is implemented in most FM radios and virtually all in-car radio systems.

Even though the university radio station does not intend to transmit any traffic or news
announcements, it still is an advantage if they can employ an RDS encoder to transmit the
station name. Commercial RDS encoders are expensive and require a dedicated PC to operate
them. The addition of a PC will make the system complicated for non-technical users and also
the station’s budget does not allow for such purchases. However it is possible to build an RDS
encoder by using simple components and a microprocessor.

Some work has already been done to develop and RDS encoder. The knowledge gained from
the previous students will be build upon of to make a functional unit within this project. The
programmes for the microprocessor, provisionally PIC16F877, will be written and compiled
using the MPLAB software and the circuit simulations will be done using the Proteus Virtual
System Modelling software.

This report contains a brief review of the RDS standard, which includes the physical layer
(hardware) and the data-link layer and message format (software) part of the encoder system.
After the review of the theory, the software format, which has been already implemented, has
been discussed. As there are various different comparisons made within the text between the
different strategies and their implementation advantages and disadvantages, the
implementation of the chosen strategy for each specific task is explained immediately after
the technical discussion part. A brief description of the intended hardware layout, the project
timescale and budget planning are also included in the discussions section.

RDS Encoder Project Hamed Haddadi 6

2. Physical layer of RDS system

The RBDS standard, April 1998 was consulted to produce the following technical details of
and RDS signal. RBDS standard is the American version of RDS and it is exactly similar in
terms of operation and it was used as it is freely available on the web. The Radio Data System
is intended for application to VHF/FM sound broadcasts in the range 87.5 to 108.0 MHz
which may carry either stereophonic (pilot tone) or monophonic programs. The main
objectives of RDS are to enable improved functionality for FM receivers and to make them
more user friendly by using features such as Programme Identification (PI), Programme
Service (PS) display and where applicable, automatic tuning for portable and in particular, car
radios.

2.1 Subcarrier Frequency

During stereo broadcasts, the subcarrier will be locked to the third harmonic of the 19 kHz
pilot-tone. The tolerance on the frequency of the 19 kHz pilot tone is ±2Hz, therefore the
tolerance on the frequency of the subcarrier during stereo broadcast will be ± 6 Hz.
During monophonic broadcasts the frequency of the subcarrier will be 57 kHz ±6 Hz.

2.2 Subcarrier phase

During stereo broadcasts the subcarrier will be locked either in phase or in quadrature to the
third harmonic of the 19 kHz pilot tone. The tolerance on this phase must be within ±10°,
measured at the modulation input to the FM transmitter. Figure 1 shows the FM signal.

Figure 1: FM spectrum

Figures 2 and 3 represent the block diagrams of the transmitter and receiver.

RDS Encoder Project Hamed Haddadi 7

Figure 2: Block diagram of RDS encoder at the transmitter

Figure 3: Block diagram of a typical RDS receiver

RDS Encoder Project Hamed Haddadi 8

2.3 Subcarrier level

The deviation range of the FM carrier due to the un-modulated subcarrier is from ±1.0 kHz to
± 7.5 kHz. The recommended best compromise is ± 2.0 kHz. The decoder/demodulator
should also operate properly when the deviation of the subcarrier is varied within these limits
during periods not less than 10ms. The maximum permitted deviation due to the composite
multiplex signal is ± 75 kHz.

2.4 Method of modulation

The subcarrier is amplitude-modulated by the shaped and bi-phase coded signal. The
subcarrier is suppressed. This method of modulation may alternatively be thought of as a form
of two-phase phase shift keying (PSK) with a phase deviation of ± 90°.

2.5 Clock Frequency and Data Rate

The basic clock frequency is obtained by dividing the transmitted subcarrier frequency by 48.
The basic data rate of the system is therefore 1187.5 bit/s ± 0.125 bit/s.

2.6 Differential Coding

The source data at the transmitter are differentially encoded using table 1:

Previous output (at time ti-1) New input (at ti) New Output (at time ti)

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Table 1: Differential encoding

Where ti is some arbitrary time and ti-1 is the time one message-data clock period earlier, and
where the message-data-clock rate is equal to 1187.5 Hz.

Thus when the input level is 0, the output remains unchanged from the previous output bit,
and when an input 1 occurs, the new output bit is the complement of the previous output bit.
In the receiver, the data may be decoded by the inverse process, as shown in table 2.

RDS Encoder Project Hamed Haddadi 9

Previous input (at time ti-1) New input (at ti) New Output (at time ti)

 0 0 0

 0 1 1

 1 0 1

 1 1 0

Table 2: Differential decoding

The data is thus correctly decoded whether or not the demodulated data signal in inverted.

2.7 Data Channel Spectrum Shaping

The power of the data signal at and close to the 57 kHz subcarrier is minimised by coding
each source data bit as a bi-phase symbol.

This is done to avoid data-modulated cross talk in phase locked loop (PLL) stereo decoders,
and to achieve compatibility with the ARI system. The principle of the process of generation
was shown in Fig 2. In concept each source bit gives rise an odd impulse pair, e(t), such that
logic level 1 at source gives:

 e(t) = δ(t) -δ (t-td/2)

And logic 0 at source gives:

 e(t) = δ(t) +δ (t-td/2)

These pairs are then shaped by a filter HT(f), to give the required band limited spectrum

where:

td =

5.1187
1

 s

The data-spectrum shaping filtering has been split equally between the transmitter and the
receiver (to give optimum performance in the presence of noise) so that, ideally, the data
filtering at the receiver should be identical to that of the transmitter, i.e. as given above. The
overall data-channel spectrum shaping Ho(f) would then be 100% cosine roll-off.

The specified transmitter and receiver low-pass filter responses, as defined in previous
equations, and the overall data-channel spectrum shaping is shown in figure 5.
The spectrum of the transmitted bi-phase coded radio-data signal is shown in figure 6 and the
time-function of a single bi-phase symbol (as transmitted) in figure 7.

RDS Encoder Project Hamed Haddadi 10

The 57 kHz radio-data signal waveform at the output of the radio-data source equipment may
be seen in the photograph of figure 7.

Figure 4: Amplitude response of the specified transmitter or receiver data-shaping filter

Figure 5: Amplitude response of the combined transmitter and receiver data-shaping filters

RDS Encoder Project Hamed Haddadi 11

Figure 6: Spectrum of bi-phase coded radio-data signals

Figure 7: Time-function of a single bi-phase symbol

Figure 8: 57 kHz radio-data signals

RDS Encoder Project Hamed Haddadi 12

3. Base-band coding of the RDS system

3.1 Base-band coding structure

Figure 9 shows the structure of the baseband coding. The largest element in the structure is
called a “group” of 104 bits each. Each group comprises 4 blocks of 26 bits each. Each block
comprises an information word and a checkword. Each information word comprises 16 bits.
Each checkword comprises 10 bits.

Figure 9: Structure of the baseband coding

3.2 Order of bit transmission

All information words and checkwords have their most significant bit (m.s.b) transmitted first
(see figure 10). Thus the last bit transmitted in a binary number or address has weight 20.
The data transmission is fully synchronous and there are no gaps between the groups or
blocks.

Figure 10: Message format and addressing

Information words and their use are explained in section 4, message format.

RDS Encoder Project Hamed Haddadi 13

3.3 Error protection

Each transmitted 26-bit block contains a 10-bit checkword which is primarily intended to
enable the receiver/decoder to detect and correct errors which occur in transmission. This
checkword (i.e. c’9, c’8 … c’0 in figure 9) is the sum (modulo 2) of:

a) the reminder after multiplication by x10 and then division (modulo 2) by the
generator polynomial g(x), of the 16-bit information word),
b) a 10-bit binary string d(x), called the 2offset word2,

Where the generator polynomial, g(x) is given by:
 g(x) = x10 + x8 + x7 + x5 + x4 + x3 + 1
The offset value, d(x), which is different for each block within a group is given in table 3.

Binary Value

Offset Word

 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

A

0

0

1

1

1

1

1

1

0

0

B 0 1 1 0 0 1 1 0 0 0

C 0 1 0 1 1 0 1 0 0 0

C’ 1 1 0 1 0 1 0 0 0 0

D 0 1 1 0 1 1 0 1 0 0

Table 3: The checkword offset values

The purpose of adding the offset word is to provide a group and block synchronisation system
in the receiver/decoder. Because the addition of the offset is reversible in the decoder, the
normal additive error correcting and detecting properties of the basic code are unaffected.
The error-protecting code has the following error-checking capabilities:

a) Detects all single and double errors in a block.
b) Detects any single error burst spanning 10 bits or less.
c) Detects about 99.8% of bursts spanning 11 bits and about 99.9% of all longer bursts.

The code is also an optimal burst error correcting code 5 and is capable of correcting any
single burst of 5 bits or less.
The beginnings and ends of the data blocks ma be recognised in the receiver/decoder by using
the fact that the error-checking decoder will detect block synchronisation slip as well as the
additive errors. This system is made reliable by the addition of the offset words, which also
serve to identify the blocks within the group.

RDS Encoder Project Hamed Haddadi 14

3.4 Message format (session and presentation layer)

The main features of the message structure have been illustrated in figure 10. These may be
seen to be:

1) The first block in every group always contains a Program Identification (PI) code.
This information consists of a code enabling the receiver to distinguish between countries,
areas in which the same programme is transmitted and the identification of the program itself.

2) The first four bits of the second block of every group are allocated to a four-bit code
which specifies the application of the group. Groups will b referred to as types 0 to 15
according to the binary weighting of A3, A2, A1, and A0. For each type (0 to 15) two
“versions” can be defined. The “version” is specified by the fifth bit (B0) of block 2:
a) B0 = 0: the PI code is inserted in block 1 only. This is called version A.
b) B0 = 1: the PI is inserted in blocks 1 and 3 of all group type. This is version B.

3) The Programme Type code (PTY) and Traffic Program identification (TP) occupy fixed
location in block 2 of every group. This is an identification number to be transmitted with
each program item and which is intended to specify the current program type (e.g. news,
sports…)

The above features are available in all of the 30 possible group types. The main objective of
this project is to transmit the station name. Groups 0A and 0B are the most basic groups that
without any need for other information, e.g. constant information feedback or traffic or text
update, will transmit the station name. Block 3 of Group 0A consists of a list of alternative
frequencies. This feature is for hand-over between different frequencies for stations which
transmit over a wide geographical area and is not being used by the UCL radio station. Block
3 of group 0B simply repeats the PI code, with a different offset word, C’. Hence for the
purpose of this project, group 0B is chosen for transmitting the station name. Figure 11 shows
the format of the group type 0B.

Figure 11: Basic tuning and switching information – Type 0B group

A total of four type 0B groups are required to transmit the entire Program Service (PS) name
and therefore four type 0B groups will be required per second. The Program Service name
comprises eight characters. It is the primary aid to listeners in program identification and
selection. The PS name is to be used only to identify the station. This text may be changed as
required by station, but shall not be scrolled or flashed or altered in a manner that would be
distracting to the viewer (i.e. not more frequently than once per minute).

Notes on group 0B:
1. TA = Traffic Announcement code (1 bit)

RDS Encoder Project Hamed Haddadi 15

2. M/S = Music-Speech switch code
3. DI = Decoder-Identification control code (4 bits). This code is transmitted as
1 bit in each 0B group. The Program Service name and DI segment address code (C1 and C0)
serve to locate these bits in the codeword. Thus in a group with C1C0 = “00” the DI bit is d3.
These code bits are transmitted most significant bit (d3) first. Table 4 demonstrates the DI bit-
settings.

Settings Meaning
Bit d0 set to 0: Mono
Bit d0 set to 1: Stereo
Bit d1 set to 0: Not Artificial Head
Bit d1 set to 1: Artificial Head
Bit d2 set to 0: Not compressed
Bit d2 set to 1: Compressed
Bit d3 set to 0: Static PTY
Bit d3 set to 1: Dynamically switched PTY

Table 4: DI code bits

4. Program Service name is transmitted as 8-bit character as defined in the 8-bit
code-tables in annex E of RBDS standard [1]. Eight characters (including spaces) are allowed
for each network and are transmitted as a 2-characteer segment in each group. These
segments are located in the displayed name by the code bits C1 and C0 in block 2. The
addresses of the characters increase from left to right in the display. The most significant bit
(b7) of each character is transmitted first.

RDS Encoder Project Hamed Haddadi 16

4. Project objectives and strategies

As clearly suggested by the title, the main objective of this project is to build an RDS encoder
to enable the UCL radio station, RARE FM, to transmit the station name on the FM spectrum.
This task has been attempted in the Electronic & Electrical Engineering department. The main
reason of failure of previous attempts has been the absence of valid data for transmission. The
hardware design has been studied and areas for improvement have been identified. The focus
of the first stage of the project has mainly been on development of the message format and
session-presentation layer. The following objectives are set for the project:

• To build a complete (hardware & software) RDS Encoder to facilitate Program
Service transmission for RARE FM.
• To provide valid data according to the European RDS standard for encoding.
• To design and implement a user-friendly interface to enable non-technical personnel
to easily enter the desired PS name.
• To offer the facility to restore the settings hence avoid the need to enter the same data
in case of power failure.
• To complete the unit within the allocated time and budget, 6 months and £100.

The choice of group 0B for the purpose of the encoding has been based on the fact that it will
allow the transmission of PS with no need for any other information such as traffic or
announcement. This means that the unit functions as a stand-alone without any need for
further attention to provide data or network connection. Transmission of PS as the main
objective of the project will enable easy tuning for the in-car radio units.

4.1 Providing frame data

There are various constants and variables within a group. It would be possible to enable the
user to enter all the required data at the start-up part of the system. But this will only make the
unit extremely hard to operate as all the values have to be set according to the RDS standard
and any mistake will mean that the bit-stream is not verified and displayed at the receiver end.
In order to avoid this, the constant parts of the group data are set within the program memory,
according to RDS standard as explained below, and user is only required to enter the PS
name.
1. PI code: Figure 12 shows the PI structure.

 Figure 12: PI structure
These bits are all pre-set in according to RDS standard as followed:

Bits b15 to b12: Country Code: These bits are set to 0xC or 0b1100 for UK.
Bits b11 to b8: Area coverage: These bits are set to 0x0 or 0b0000 for local coverage.
Bits b7 to b0: Program reference number: These bits are set to 0x00 for not assigned.

2. Group Type: These bits are set to 0x0 for 0 group type.
3. B0: This bit is set to 1 for group B type.
4. TP: This is set to 0 for no traffic program.
5. PTY: These bits are set to obooooo for not assigned.
6. TA: This is set to 0 for no traffic announcement.
7. M/S: This bit is set to 0 according to RDS standard by default for music.
8. DI, C1, C0: These bits are set in each group according to the group sequence in the
stream as followed:

RDS Encoder Project Hamed Haddadi 17

A) First group: 0b0 (d3)00 for static PTY.
B) Second group: 0b0 (d2)00 for not compressed.
C) Third group: 0b0 (d2)00 for no artificial head.
D) Second group: 0b1 (d2)00 for stereo.

9. Program Service name: Every group will transmit 2 characters, starting from the most
significant character, e.g. [RA] in (RARE__FM) is located in first group.

4.2 Data input method for PS

Data can either be input via setting 64 switches for the 8 character ASCII code of the PS name
or it can be input to the microcontroller via push button switches or a PS2 keyboard. The
analogue method has been attempted before and is extremely difficult to operate. The more
feasible design is to input the values to the microcontroller via a digital device:

A: PS2 keyboard. This method is extremely friendly but it introduces the complexity of
writing a keyboard driver and also occupying much more space while adding the risk of
breakages and damage in the busy studio environment.

B: Push button switches: Using three heavy duty push button switches, the user can decide
whether to restore the previous settings or not, scrolling between YES and NO, and then
pressing the SET switch. If he chooses not to restore the previous settings, he will scroll
through the available set of ASCII characters, from SPACE through Z. By pressing the set
button, the first character is set and stored in the EEPROM. The same routine is repeated for
the other 7 characters and by pressing the SET button for the final character, the program will
proceeds to CRC calculation. The disadvantages of this method are the cost of these switches
and the fact that using this method, it will take a bit longer to input the data. But the cost can
be compromised by the fact that the switches are not prone to damages in the studio
environment. Figure 13 shows the design of this interface.

Figure 13: Data input via push-button switches

The following algorithm is implemented for polling for the switches for restoring data:

CHECK_SWITCH ; Polls switches for decision to restore setting
GET_IT btfsc SWITCH_PORT,0
 call D0_SET ; restore
 btfsc SWITCH_PORT,1
 call D1_SET : Don't restore
got btfss SWITCH_PORT,2
 goto GET_IT
 movf DECISION,W ; Check if D2 is not pressed
 andlw 0xff ; without making a decision
 btfsc STATUS,Z
 goto GET_IT ; if yes, loop until decision is made
 return
The following code demonstrates the acquisition of one PS character and storing it in the PIC
EEPROM:

GET_PS8 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2

RDS Encoder Project Hamed Haddadi 18

 goto GET_PS8
 return

CHAR_UP
 call SWITCH_DELAY
 movf POSITION,0 ; set display position
 call SET_ADDR
 movf CHARACTER,0 ; move character to W register
 call check_max ; check if reached the upper boundary
 movf CHARACTER,0
 call LCD_CHAR
 return

check_max ; it checks mor the upper character
 movwf CHAR_TEMP ; store the character locally
 movf MAX_CHAR,0 ; now move MAX_CHAR to W register
 subwf CHAR_TEMP,0 ; subtract the two files
 btfsc STATUS,Z ; Is the result zero?? then we reached maximum
 goto SET2MAX ; keep the character as it is
 goto INCREMENT ; if not reached the max, increment the character

SET2MAX
 movf MAX_CHAR,0 ; Keep MAX_CHAR as the character of chioce
 return

INCREMENT
 incf CHARACTER,1 ; increment the character
 return

CHAR_DOWN
 call SWITCH_DELAY
 movf POSITION,0 ; set display position
 call SET_ADDR
 movf CHARACTER,0 ; move character to W register
 call check_min ; check if reached the lower boundary
 movf CHARACTER,0
 call LCD_CHAR
 return

check_min ; it checks mor the lower character
 movwf CHAR_TEMP ; store the character locally
 movf MIN_CHAR,0 ; now move MIN_CHAR to W register
 subwf CHAR_TEMP,0 ; subtract the two files
 btfsc STATUS,Z ; Is the result zero?? then we reached minimum
 goto SET2MIN ; keep the character as it is
 goto DECREMENT ; if not reached the min, decrement the character

SET2MIN
 movf MIN_CHAR,0 ; Keep MIN_CHAR as the character of chioce
 return

DECREMENT
 decf CHARACTER,1 ; decrement the character
 return

EEPROM storage:
 movwf PS_8 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x07
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

4.3 Data display and user interface

As there is a need for characters to be displayed for verification and during transmitting stage,
there is need for a display. Two type of display are available:

A: Alphanumeric LED display

RDS Encoder Project Hamed Haddadi 19

This display is cheap and easy to operate as each character is driven separately and there is no
processing required, but in order to use this facility, there is a need for driving each character
separately, this will mean either using many ICs, which will increase the complexity of the
PCB and will introduce heat dissipation problems, or multiplexing the data line through one
IC, which maybe very complicated for driving a large number of characters.

B: Using an intelligent LCD display

The new ranges of displays have eliminated the need for driving each character separately by
using an internal chip and timing issues are dealt within the chip. But they are relatively
expensive and a typical entry level can cost around £30. There is also need for writing an
initialisation code for the display and one of the ports need to be constantly swapped between
input and output to check the busy flag of the LCD to make sure there in no data loss. The
initialisation code is as followed:

For the purpose of this project, a very cheap LCD module was obtained which would cost
60% less than the commercial ones available. But the initialisation was implemented in a
different way than the standard data sheet and the code is shown below:

; INIT_LCD...... Module to initialise the display
;**
INIT_LCD
 call DELAY_30MS

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_5MS

RDS Encoder Project Hamed Haddadi 20

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_125US

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_125US

 movlw 0x0F ; display On, curser On, blink On 0b00001111
 call LCD_CMND
 call DELAY_5MS

 movlw 0x01 ; display clear, 0b00000001
 call LCD_CMND
 return

The delays have been implemented using a series of recursive loops. All the function calls and
descriptions can be found in appendix A.

4.4 Data processing and input/output control

Providing the data at the right time for modulation with the FM signal has been the major
obstacle of this project in previous attempts. Analogue and digital methods have both been
tried and with great advantage, a digital source provides a much more versatile way of
controlling and manipulating the data. Since the use of intelligent LCD and de-bounce
switches will also emphasis the need for a microprocessor, this method was chosen for data
control. The following is the control software data flow required for the encoder:

Switch on

Display Opening
message

Do you want to use
previous settings?

Perform CRC

Yes

Output Data

Input New Data

Top Level Software Flow Diagram

After studying the wide range of microcontrollers that are commercially available,
Microchip’s PIC16F877 was chosen for the data control. This is an 8 bit microprocessor with
8k program memory and 256 byte EEPROM data memory which both memory limits were
enough for the application. The development environment, MPLAB IDE, is freely available
on the web and from Microchip’s website [2] and the programmer, PICstart PLUS, is
available in the departmental laboratory. Figure 14 shows the pin-out diagram of PIC16F877.

RDS Encoder Project Hamed Haddadi 21

Figure 14: Pin-out diagram of PIC16F877 micro-processor

It operates with clock rates of up to 20MHz giving an instruction arte of up to 5 MIPS, so the
clock frequency is equal to 0.2µs. A crystal oscillator was chosen to ensure that correct
timings and clock rate are achieved. Figure 15 shows the connection of the crystal to the
microprocessor.

Figure 15: Clocking the PIC

The suggested values for the stabiliser capacitors were between 15-33 pF.

Another problem encountered was the fact that switches bounce back after being pressed
down and released which would lead to many jumps in the character range with just one
switch. This problem was solved by adding a short 0.2 second de-bounce delay after the
switch port reading, which would clear the port from the previous switch voltage. The
switches were also tied with 4k7 Ohm resistors to limit the current drawn from the power
supply when the switches are being pressed often. Figure 16 demonstrates the data control
and user-interface of the RDS encoder.

RDS Encoder Project Hamed Haddadi 22

D
7

14
D

6
13

D
5

12
D

4
11

D
3

10
D

2
9

D
1

8
D

0
7

E
6

R
W

5
R

S
4

V
S

S
1

V
D

D
2

V
E

E
3

LCD1
LM016L

RA0/AN02

RA1/AN13

RA2/AN2/VREF-4

RA4/T0CKI6

RA5/AN4/SS7

RE0/AN5/RD8

RE1/AN6/WR9

RE2/AN7/CS10

OSC1/CLKIN13

OSC2/CLKOUT14

RC1/T1OSI/CCP2 16

RC2/CCP1 17

RC3/SCK/SCL 18

RD0/PSP0 19

RD1/PSP1 20

RB7/PGD 40RB6/PGC 39RB5 38RB4 37RB3/PGM 36RB2 35RB1 34RB0/INT 33

RD7/PSP7 30RD6/PSP6 29RD5/PSP5 28RD4/PSP4 27RD3/PSP3 22RD2/PSP2 21

RC7/RX/DT 26RC6/TX/CK 25RC5/SDO 24RC4/SDI/SDA 23

RA3/AN3/VREF+5

RC0/T1OSO/T1CKI 15

MCLR/Vpp/THV1

U1

PIC16F877

X1
CRYSTAL

BAT1
5V

R1
4k7

R2
4k7R3

4k7

Figure 16: RDS encoder data input and user interface

4.5 CRC calculation

Every block in the group contains a 16 bit information word and a 10 bit checkword which is
obtained by adding the result of the calculation of the Cyclic Redundancy Check to a specific
offset, as explained in section 3.3. Calculation of the CRC can be done in the hardware as
explained in the RDS standard. Figure 17 shows the hardware arrangement required to
generate the 10 bit CRC value.

Figure 17: CRC generator circuit
This method can lead to a very high component count and greatly add to the complexity of the
circuits. It has the advantage of being easily implemented as the method is pre-designed.
It is also possible to calculate the CRC value in the microprocessor. This will lead to a much
less complex circuit and budget saving on component purchase. The only disadvantage of this
method is the need to divide a 26 bit number by a 10 bit number, in an 8 bit microprocessor.
This method was chosen to pursue whilst accepting the challenge of mathematical
manipulations. Figure 18 shows the basic method of performing a modulo2 division.

RDS Encoder Project Hamed Haddadi 23

Figure 18: Modulo2 division

However, in a microprocessor, there are only 8-bit registers available, and there is no
command for modulo2 division. However, using pseudo algorithm this process can be
explained:

1. Load the register with zero bits.
2. Augment the message by appending W zero bits to the end of it.
While (more message bits)
Begin
3. Shift the register left by one bit, reading the next bit of the augmented
message into register bit position 0.
If (a 1 bit popped out of the register during step 3)
Register = Register XOR Poly.
End

The register now contains the remainder.

In practice the IF condition can be tested by testing the top bit of Register before performing
the shift. Figure 19 demonstrates the implementation of the above technique. This method can
be extended for larger numbers. In the case of the RDS block, 26 bits means that four 8-bit
registers are used for the message data and the 10-bit polynomial will require two 8-bit
registers. A buffer register and two working registers will be used, and data is left-rotated into
the working registers, bit by bit, and whenever a 1 appears on the carry flag, both working
registers or XORed with the generator polynomial registers. This process is repeated until all
the 16 extra bits (in comparison with the 10-bit polynomial) are shifted out. The reminder in
the working registers is the CRC value for the given 16-bit information word.

Figure 19: Modulo2 division using one register

RDS Encoder Project Hamed Haddadi 24

The following is an extract from the assembly code generating the CRC:

CRC_INIT ; Initialise the registers
 clrf CHAR_BUF ; rotate left twice, through carry,
 bcf STATUS,C ; so that the 10^X factor can correctly
 rlf CHAR_LOW,1 ; be implemented, i.e. by adding an 8bit
 rlf CHAR_HIGH,1 ; all 0s register to the end of the data,
 rlf CHAR_BUF,1 ; and shifting to left twice to have another
 bcf STATUS,C ; 2 obits.
 rlf CHAR_LOW,1
 rlf CHAR_HIGH,1
 rlf CHAR_BUF,1

 movlw 0x10 ; 16 left shifts, for the CRC calculation
 movwf ITERATIONS
 movf CHAR_BUF,0 ; shifting all to the right place
 movwf CRC_HIGH
 movf CHAR_HIGH,0
 movwf CRC_LOW
 movf CHAR_LOW,0
 movwf CRC_BUF1
 movlw 0x00 ; adding the last 8 zero's
 movwf CRC_BUF2

 movlw 0x05 ; Storing the g(x) polynomial in registers
 movwf GXPOLY_HIGH
 movlw 0xb9
 movwf GXPOLY_LOW

 return

CRC_GEN ; CRC generator routine
 bcf STATUS,C ; clear the carry bit
 rlf CRC_BUF2,1 ; left shift all the data by one bit,
 rlf CRC_BUF1,1 ; using carry flag, so the carry 1 or 0
 rlf CRC_LOW,1 ; will go to the LSB of next byte
 rlf CRC_HIGH,1
 btfsc CRC_HIGH,2 ; is the last bit a 1?
 call DO_XOR ; if yes, XOR the working registers with g(x)
 decfsz ITERATIONS,1 ; Decrement iterations, more bits left?
 goto CRC_GEN ; if yes, do another bit
 return

DO_XOR ; Modulo 2 division with the g(x)
 movf GXPOLY_LOW,0
 xorwf CRC_LOW,1
 movf GXPOLY_HIGH,0
 xorwf CRC_HIGH,1
 return

4.6 Bit stream output

 Data transmission tasks start after the CRC calculation steps. User is informed of the
PS name currently being transmitted via the LCD display and the microprocessor constantly
polls for the 1187.5 signal. As soon as this signal goes high, the m.s.b of first block of the first
group is output to the output port. The block data is then rotated left and the carry will
represent the next bit to be transmitted. This process is repeated 16 times for block
information words and 8 times for each check-word value. For the top 2 bits of the check-
word values, the data nibbles are swapped and then rotated left twice. In this way there is only
need for two transmission cycles and many fewer instruction cycles. This is done in only 5
steps so it will have a frequency much higher than the 1187.5Hz signal. The next bit will be
ready for transmission before the 1187.5 goes high again. After the first group, the second,
third and fourth group are transmitted in turn and then the program loops back to the first
group. The following code is a very small part of the transmission assembly code:

 movlw 0x02 ; Send the top two bits of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PS checkword

RDS Encoder Project Hamed Haddadi 25

 movwf ITERATIONS
 movf CHCKWRD_3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 return

TRANSMIT_BUF_DATA ; Transmit the data byte held in the buffer
 rlf TRX_BUF,1 ; Rotate left once, in itself
 btfss STATUS, C ; Test the carry flag value
 call TRANSMIT_0 ; is carry 0? transmit a 0
 btfsc STATUS, C
 call TRANSMIT_1 ; Is carry 1? transmit a 1
 decfsz ITERATIONS,1 ; Decrement iteration until it reaches 0
 goto TRANSMIT_BUF_DATA
 return

TRANSMIT_0
 btfss RDS_PORT,SIGNAL ; Is 1187.5 high?
 goto TRANSMIT_0 ; No? then loop until it goes high
 bcf RDS_PORT, RDS_DATA ; Clear the port bit, 0 will be modulated
 return

TRANSMIT_1
 btfss RDS_PORT,SIGNAL ; Is 1187.5 high?
 goto TRANSMIT_1 ; No? then loop until it goes high
 bsf RDS_PORT, RDS_DATA ; Set the port bit, 1 will be modulated
 return

Even though use of intelligent LCD and microprocessor has the disadvantage of taking a
considerable amount of time to develop skills in a new programming language and its
abilities, the time saved on designing complex circuits for the analogue techniques and the
extremely user-friendly interface means that the encoder would be compensate for the
software development time. The unit is much easier to operate and even upgrade in the future
if any other facilities such as radio text are considered to be added to the system.

RDS Encoder Project Hamed Haddadi 26

5. Software development tools

The software side of the project is done using various simulation tools for the hardware parts
of the encoder block and assembly programming language is used for the microcontroller part
of the radio message source. This section entails a brief description of the software tools used
for software and hardware development.

5.1. MPLAB IDE

The assembly codes for the PIC microcontrollers used within the project are developed using
MPLAB Integrated Development Environment. Figure 20 shows a screen dump of the
MPLAB IDE software.

Figure 20: MPLAB IDE software

This software facilitates assembly code debugging, and it enables communication with the
programmer PICstart PLUS, which loads the program .HEX file into the PIC. The software
has been tested on the hardware circuit and it performs all the required action. The EEPROM
data is also restored after power-up if requested by the user
The main objectives of the project in this part are achieved. An easy to operate user-interface
is implemented and PS name is obtained from the user and the cyclic redundancy checks are
performed. The user is also informed of the transmitted PS via the LCD interface and he will
have the opportunity to restore the PS name in case the unit is turned off and then on for any
reason.

5.2. Orcad PSpice

PSpice is the design software by Cadence Ltd allowing simulation and synthesis of circuit
diagrams. All the circuit diagrams in this report have been designed using Orcad Design.

RDS Encoder Project Hamed Haddadi 27

5.3. Proteus Virtual Circuit Modelling

Proteus VSM is a mixed signal simulation environment allowing an extensive range of
microcontrollers and devices to be used within functional blocks. It also enables the use of
oscilloscope and signal generators so simulation of various signals within an embedded
system environment is possible using this software. Because of high license costs, an
evaluation model was used with a low code limit and component count however it helped
design of the PIC and LCD units. Figure 21 shows the interface of Protues VSM.

Figure 21: Proteus VSM software interface

5.4. Easy PC

Easy PC is the “Printed Circuit Board” design software provided by Number One Systems
Ltd. It enables design of various PCBs and it has a simple user interface allowing control over
drill holes and component spacing. This software was used to design the PCB for the radio
message source block.

RDS Encoder Project Hamed Haddadi 28

6. RDS encoder block circuits

Circuit blocks are all made according to RBDS standard [1] and using the block diagram of
figure 2 on page 7. The circuit diagrams and where relevant the input and output are shown.

6.1. Radio Data Message source

The radio data message source as explained in section 4.4 is designed using PIC16F877
microcontroller and heavy duty push button switches. Pull-up resistors of 4k7 Ohms are used
to limit the current on the PIC ports when switches are pushed down or when the 1187.5
signal goes high. An extra emergency battery holder, containing 3 AA batteries will be added
to make sure that the module doesn’t stop transmitting if disconnected for a short period of
time. Figure 22 shows a picture of the data message source on breadboard and figure 23
shows the PCB design for this part of the encoder.

Figure 22: Data message source connected on breadboard

Figure 23: PCB design for the data message source block

RDS Encoder Project Hamed Haddadi 29

6.2. Differential encoder

Data from the PIC port is passed to a differential encoder. This block is explained in the
section 2.6, extracted from the RBDS [1] standard. The flip-flop used is a Philips 74HC74 D-
type positive edge-triggered flip-flop. Exclusive-OR function was implemented using a
Fairchild DM74LS86 2-input gate. Figure 24 shows the PSpice diagram of the differential
encoder.

To bi-phase Encoder
1187.5

U1A
74LS73

14

1

3

12

13

2

J1

CLK1

K1

Q1

Q1C
L1

From PIC Microcontroller

U4A

74LS86

1

2
3

Figure 24: Differential encoder

6.3. Bi-phase symbol generator

The bi-phase symbol generator converts each bit to an odd pair of short pulses which are
spaced one bit length. A "1" is converted to a +- pair, a "0" is converted to a -+ pair. The
pulses are then passed through a 2nd Order Sallen-Key low-pass filter with a cosine-shaped
transfer function. The combination of this filter and the inherent spectrum-shaping of the bi-
phase scheme lead to a spectrum with a maximum near 1 kHz and zero amplitude at 0 and 2.4
kHz. Section 2.7 explains the theory behind bi-phase encoding. As delay and subtraction of
short pulses is not possible in the flip-flops, another PIC microcontroller was used for
generation and subtraction of data pulses, namely PIC16C622. The system is clocked with the
2375Hz clock generated from the divide-by-24 counter. The PIC starts of by polling for the
1187.5 clock. When this clock goes high, it also polls for the data line and output is decided
based on table 5. In this case the previous input is zero as the input is only valid when the
1187.5 clock is high. The PIC generates the output pulse of short duration, about 51µs, by
taking an output port high, then pulling it low after the delay. When a negative pulse is to be
generated, one of the PIC ports goes high, but the output is connected to a fast inverting
amplifier circuit, using MC33171 Op-amp with slew rate of 2V/µ. The next time that the 2375
signal goes high, the 1187.5 is low so the input data is considered to be zero. The output is
then decided to be the opposite of the previous output, according to table 6.

Input N Previous Input

(N-1)
N-(N-1)
 output

+VE 0 +VE
-VE 0 -VE

Table 5: Output at 1187.5 data signal levels

Input N Previous Input

(N-1)
N-(N-1)
 output

0 +VE -VE
0 -VE +VE

Table 6: Output at 2375 zero pulse level

The following is an extract from the assembly code written for bi-phase symbol generation
from the PIC.

RDS Encoder Project Hamed Haddadi 30

poll11875
 btfss PORTB,CLK11875
 goto poll11875
 return
signal_pulse
 btfss PORTB, RDS
 goto PULSE_DOWN
 goto PULSE_HIGH

poll2375
 btfss PORTB, CLK2375
 goto poll2375
 return

clear_pulse
 btfsc MEMORY,0
 goto PULSE_DOWN
 goto PULSE_HIGH

PULSE_HIGH
 bsf PORTB, PULSEHIGH
 call DELAY_51US
 bcf PORTB, PULSEHIGH
 bsf MEMORY,0
 return

PULSE_DOWN
 bsf PORTB, PULSEDOWN
 call DELAY_51US
 bcf PORTB, PULSEDOWN
 bcf MEMORY,0
 return

Figure 25 shows the PSpice diagram of the PIC configuration for bi-phase symbol generation.

22pF

U1

PIC16C622

4

14

15
16

17
18
1
2
3

6
7
8
9
10
11
12
13

MCLR/VPP

VDD

OSC2/CLKOUT
OSC1/CLK

RA0/AN0
RA1/AN1
RA2/AN2/REF
RA3/AN3
RA4/T0CLK

RB0/INT
RB1
RB2
RB3
RB4
RB5
RB6
RB7

10MHz

CRYSTAL

1187.5 clock

2375 clock

High Pulse

RDS data

LOW pulse (to -v e opamp)

5V

22pF

Figure 25: PIC16C622 for bi-phase symbol generation

Figure 26 shows the PSpice diagram of the inverting amplifier for negative pulse generation.

Pulse f rom PIC -

+

MC33171

3

2
6

7 1
4 5

- 12V

1k To shaping f ilter

1K

+12V
Figure 26: Inverting amplifier for negative pulses

RDS Encoder Project Hamed Haddadi 31

6.4. Shaping filter

Data from the bi-phase symbol generator must go through a shaping filter as explained in
section 2.7. This is a raised cosine filter with 100% roll-off and cut-off frequency of
1187.5Hz. A 2nd order Sallen-Key was devised for this purpose. The component values are
calculated to give a cut-off at 1187.5Hz frequency, thus giving

0

1
2
ωR

C = and
02

12
ωR

C = ,

where ω0 is the cut-off frequency in radians. Using 10nf capacitors, R1 will be 18K9 Ohms
and R2 will be 9k5 Ohms. Figure 27 shows a PSpice diagram of the shaping filter.

+12V

C2

-VE 12V

+

- 741

3

2
6

7 1
4 5

R1
to modulator

Bi-Phase pulses

C1

R2

Figure 27: Shaping filter

6.5. 57 kHz signal generator

The RDS data has to be modulated with the FM signal and hence it needs to be clocked. The
RDS carrier is at 57 kHz while the only signal available from the station stereo coder is the 19
kHz pilot tone. In order to generate a 57 kHz carrier in phase with the 19 kHz pilot tone, it is
possible to use a filter to find the 3rd harmonic. This would need many active components and
would require considerable phase compensation. As the 19 kHz pilot tone is a square wave, it
can be fed into a Schmidt trigger circuit, then using a phase-locked-loop to generate a 57 kHz
signal from the 3rd harmonic. A dedicated PLL chip, HC4046B by ST, is used and the voltage
controlled oscillator’s output is then fed into a divide-by-3 circuit.
Divide-by-3 part of the PLL is implemented using a pre-settable counter, HCC4018B, and 2
NAND-gates, on HCF4011B. Figure 28 shows the oscilloscope display of this division. It is
not possible to get a 50% duty cycle from the circuit because of the configuration of the gates,
but as PLL is edge-triggered, this causes no problems for the system.

Figure 28: Divide-by-3 waveform

RDS Encoder Project Hamed Haddadi 32

Using a few variable resistors at the VCO input and the R1 input on pin 11 it is possible to get
a 57 kHz signal with less than 0.05% variation at times, which is due to variations in the 19
kHz signal input. Figure 29 shows a PSpice diagram of the complete PLL and divide-by-3
circuit.

74LS00

1

2
3

14
7

Sq-Sine Conv erter 57 kHz

74LS00

1

2
3

14
7

10k
Phase Adjust

1 3

2

19kHz Sinusoidal Wav e input

R1
10K

U5A

74HC14

1 2

4046

3
4

14

6

7
5
11
12

1
2

13

9

10
15

CIN
VCOUT

SIN

CX

CX
INH
R1
R2

PP
P1

P2

VCOIN

DEMO
ZEN

DM7476
14

1

3

12

13

2

J1

CLK1

K1

Q1

Q1C
L1

10k
Phase Adjust

1 3

2

DM7476
7

5

10

9

8

6

J2

CLK2

K2

Q2

Q2C
L2

VCC

47k

CAP 1nF

CAP 100nF

Figure 29: PLL and divide-by-3 circuit

Figure 30 shows the oscilloscope waveform of the 19 kHz input and the 57 kHz output of the
PLL circuit.

Figure 30: PLL waveform

6.6. Divide-by-24 counter

In order to generate the 2375 Hz signal for the bi-phase signal generator, the 57 kHz signal
must be divided by 24. This is done in two stages using HCF4018B divide-by-N counters,
dividing by 6 at the first stage, and dividing the output by 4 at the second stage. This signal is
then used to clock the PIC for the bi-phase symbol generator. Divide-by-24 stage does not
require any extra gates or components as the dividers allow straight division for even
numbers. Figure 31 shows the PSpice diagram of the divide-by-24 circuit.

RDS Encoder Project Hamed Haddadi 33

57KHz Clock

2375 clock

Div ide by 6

4018

2
3
7
9

12

1

14

5
4
6
11
13

10
15

I1
I2
I3
I4
I5

D

CLK

Q1
Q2
Q3
Q4
Q5

PRE
RST

Div ide by 4

4018

2
3
7
9

12

1

14

5
4
6
11
13

10
15

I1
I2
I3
I4
I5

D

CLK

Q1
Q2
Q3
Q4
Q5

PRE
RST

+5V
+5V

Figure 31: Divide-by-24 counter

Figure 32 shows the oscilloscope waveform of the divide-by-24 circuit. There is no phase
shift introduces as result of this division.

Figure 32: Divide-by-24 waveform

Figure 33 shows the circuit configuration for the PLL and divide-by-24 blocks.

Figure 33: PLL and divide-by-24 circuits

RDS Encoder Project Hamed Haddadi 34

6.7 Divide-by-2 counter

In order to generate the 1187.4 Hz clock for data output from the message source, the 2375
has to be divided by 2. This is done by using a simple DM74LS393N counter. Figure 34
shows the PSpice diagram of the circuit configuration.

+5V

U1A

74LS393

1

2

3
4
5
6

CLK

CLR

QA
QB
QC
QD

1187.5 Hz2375Hz

Figure 34: Divide-by-2 counter

Figure 35 displays the waveform output for the complete 57 kHz division to generate the
1187.5 Hz signal.

Figure 35: Divide-by-2 waveform

6.8. Modulation
The RDS bi-phase filtered symbols are modulated into the FM signal using double sideband
suppressed carrier method. The carrier is generated using the 57 kHz clock generated by the
PLL circuit. This is a square wave and it is converted to a sinusoidal wave for use by the
modulator. This conversion is done by using an L-C tuned circuit with a centre frequency of
57 kHz. As the current drawn by the modulator is very little there is no need for transistor
biasing. Figure 36 shows the PSpice diagram of the square-to-sinusoidal converter.

57kHz Sq. Input 57kHz Sine out
220k

100mH
1pF<C<10pF

Figure 36: Square-to-sinusoidal wave converter

The output can be adjusted using the trimmer until the two waves or completely in-phase.
Figure 37 shows the oscilloscope waveform output for the square-to sinusoidal waveform
converter.

RDS Encoder Project Hamed Haddadi 35

Figure 37: Square-to-sinusoidal waveform

Modulation of the data with the carrier is done using AD633 chip from Analog Devices. It is a
low cost analogue multiplier which uses two external capacitors for double sideband
suppressed carrier modulation. Figure 38 shows the circuit configuration of the modulator.

240nF

to station transmitter

0

57kHz carrier

RDS data stream

0

240nF

AD633JN

1
2
3
4

8
7
6
5

1
2
3
4

8
7
6
5

Figure 38: Modulator

Figure 39 displays the oscilloscope waveform of the modulator output, the input is a pure sine
wave for demonstration purposes.

Figure 39: Modulator waveform

RDS Encoder Project Hamed Haddadi 36

Figure 40 shows the complete modulator block and square-to sinusoidal converter circuit and
the inverting regulator on breadboard.

Figure 40: Modulator circuit

6.9 Power supply

Most of the components and circuits in the unit require 0V and +5V supplies. The modulator
and inverting amplifier and filtering circuits operate in the range of -12V to +12V. Therefore
a 12V, 400 mA adaptor is purchased to provide regulated DC power from mains. For the
circuits requiring +5V supply, a positive voltage regulator is used to provide regulated DC
voltages. Figure 41 shows the PSpice diagram of circuit configuration of the regulator.

+5V+12V DC f rom adaptor

0.1uF

L7805/TO220

1 2VIN VOUT

CAP 0.33uF

Figure 41: Positive voltage regulator

The -12V voltage is provided using LT1054 from Linear Technology, a switched capacitor
voltage converter with regulator. It simply inverts the input voltage and uses two 100 µF
capacitors. Figure 42 shows the PSpice diagram of the circuit configuration for the voltage
inverter.

+v e 12v input

+

CAPACITOR 100uF

+
CAPACITOR 100uF

LT1054

1

8

5

2
4
7
6

FB/SD

+VCC

VOUT

CAP+
CAP-
OSC
VREF

-v e 12V

Figure 42: voltage inverter

RDS Encoder Project Hamed Haddadi 37

7. Conclusions and future work

7.1 Objectives and achievements

The initial objectives of the project and achievements are discussed within this section.

Objective A) Provide RDS data stream for transmission.
This requirement has been fully met as the complete data message source unit has been
designed and tested according to RBDS standard [1]. Valid data is output from the complete
encoder circuit.

Objective B) Complete the real time control software.
This objective has been fully achieved as the control software completes the CRC error
detections and then outputs the data at the right frequency when the 1187.5 signal goes high.

Objective C) Design and build a stand-alone RDS encoder circuit within budget
This objective is achieved based on the fact that all the functional modules and circuits are
tested and synthesized. The PCB design for the data message source has been completed but
the PCBs for the rest of the encoder circuits have not been completed yet. One of the
obstacles in the design has been the lack of PCB auto-routing software that enables PCB
design from schematic diagrams. Table 7 shows the bill for the complete list of components.
It can be verified that the whole system has been built with a budget much less than 3rd year
project budgets, £100. The only part that has not yet been purchased is a PCB rack for the
system which will cost no more than £20.

Component Quantity Cost
Trimod LCD 16x2 1 £10.38
Push button switch 3 £14.04
PIC 16F877 MCU 1 £8.72
10 MHz crystal 2 £5.24
4018 Counter 3 £1.48
Power switch 1 £1.71
4046 PLL 1 £0.48
Emergency battery holder 1 £1.14
Inverting regulator 1 £4.06
Modulator 1 £0.95
PIC 16C622 1 £4.78
Regulator 2 £0.87
DC adaptor 1 £7.99
Misc. components - £5.00
Total £66.84

Table 7: Project component purchase price

7.2 Future work and improvements

The work to be done in the future includes designing PCBs for the rest of the module and
mounting the components. Another task to be completed is extraction of the 19 kHz pilot-tone
from the stereo-coder and feeding it into the system. The final task is to test the system on-air,
when RARE FM launches officially in spring 2004.

RDS Encoder Project Hamed Haddadi 38

8. Appendix

A. RDS.asm

; Filename: rds.asm *
; Date: 10th November 2002 *
;**

 list p=16f877 ; list directive to define processor
 #include <p16f877.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _XT_OSC & _WRT_ENABLE_ON
& _LVP_OFF & _DEBUG_OFF & _CPD_OFF

;***** VARIABLE DEFINITIONS

LCD_DATA EQU PORTB
LCD_CTRL EQU PORTE
SWITCH_PORT EQU PORTD ; Switches
RDS_PORT EQU PORTC ; The 1187.5Hz signal input & RDS output port

; PORT E, LCD control bits
RS EQU 0 ; LCD Register-Select control line
RW EQU 1 ; LCD Read/Write control line
E EQU 2 ; LCD Enable control line

;PORT C, RDS data stream output
RDS_DATA EQU 7 ; RDS data stream output, to be transmitted
SIGNAL EQU 6 ; 1187.5 signal

LCD_BYTE EQU 0x20 ; temporary register store for character byte to be sent
to lcd
CNT_DELAY1 EQU 0x21 ; temporary count register for 125 microsecond delay
routine
CNT_DELAY2 EQU 0x22 ; temporary count register 5 and 30 millisecond delay
routines
CNT_DELAY3 EQU 0x23 ; Temporary count for long delay
LCD_TEMP EQU 0x24 ; Temporary register for LCD_BUSY function
CHAR_TEMP EQU 0x25 ; Temporary storage for character comparisons

MS5 EQU 0x27 ; value to give a 5 millisecond delay in delay loop
MS30 EQU 0xe7 ; value to give a 30 millisecond delay in delay loop
US125 EQU 0x2a ; value to give a 125 microsecond delay in delay loop
LCD_LINE1 EQU 0x00 ; Address of character 1, Line 1
LCD_LINE2 EQU 0x40 ; Address of character 1, line 2

PS_1 EQU 0x30 ; Registers to store the 8 character PS
PS_2 EQU 0x31
PS_3 EQU 0x32
PS_4 EQU 0x33
PS_5 EQU 0x34
PS_6 EQU 0x35
PS_7 EQU 0x36
PS_8 EQU 0x37

CHARACTER EQU 0x38 ; Character to be displayed and changed on LCD
MAX_CHAR EQU 0x39 ; The upper limit of the transmittable character range
MIN_CHAR EQU 0x3a ; The lower limit of the transmittable character range
DECISION EQU 0x3b ; The storage for user decision
POSITION EQU 0x3c ; Position of the character on the LCD

CRC_HIGH EQU 0x3d ; CRC calculation registers
CRC_LOW EQU 0x3e
CRC_BUF1 EQU 0x3f
CRC_BUF2 EQU 0x41
GXPOLY_HIGH EQU 0x42
GXPOLY_LOW EQU 0x43
ITERATIONS EQU 0x44
CHAR_HIGH EQU 0x45
CHAR_LOW EQU 0x46
CHAR_BUF EQU 0x47

CHCKWRD_0_HIGH EQU 0x48 ; PS checkwords for 4 different groups
CHCKWRD_0_LOW EQU 0x49
CHCKWRD_1_HIGH EQU 0x4a
CHCKWRD_1_LOW EQU 0x4b
CHCKWRD_2_HIGH EQU 0x4c
CHCKWRD_2_LOW EQU 0x4d
CHCKWRD_3_HIGH EQU 0x4e

RDS Encoder Project Hamed Haddadi 39

CHCKWRD_3_LOW EQU 0x4f

PI_LOW EQU 0x50 ; PI words
PI_HIGH EQU 0x51
PI_CHCK1_LOW EQU 0x52 ; PI checkword with offset A for first block
PI_CHCK1_HIGH EQU 0x53
PI_CHCK3_LOW EQU 0x54 ; PI checkword with offset C' for third block
PI_CHCK3_HIGH EQU 0x55

BLCK2_0HIGH EQU 0x56 ; Block 2 data, first group
BLCK2_0LOW EQU 0x57
BLCK2_0CHK_LOW EQU 0x58
BLCK2_0CHK_HIGH EQU 0x59

BLCK2_1HIGH EQU 0x5a ; Block 2 data, second group
BLCK2_1LOW EQU 0x5b
BLCK2_1CHK_LOW EQU 0x5c
BLCK2_1CHK_HIGH EQU 0x5d

BLCK2_2HIGH EQU 0x5e ; Block 2 data, third group
BLCK2_2LOW EQU 0x5f
BLCK2_2CHK_LOW EQU 0x60
BLCK2_2CHK_HIGH EQU 0x61

BLCK2_3HIGH EQU 0x62 ; Block 2 data, fourth group
BLCK2_3LOW EQU 0x63
BLCK2_3CHK_LOW EQU 0x64
BLCK2_3CHK_HIGH EQU 0x65

TRX_BUF EQU 0x66 ; Data buffer, for bit-by-bit ouput

;**

 org 0x00
RESET goto START

START

; clrf STATUS ; Do initialization, Select bank 0
; clrf PORTE ; ALL PORT output should output Low
; clrf PORTB ; LCD data Port
; clrf PORTC ; RDS signal IO port
; clrf PORTD ; Switch port
; bsf STATUS, RP0 ; Select bank 1
; clrf TRISA ; just to save power!
; clrf TRISE ; PORT E output
; clrf TRISB ; RB7-0 outputs
; movlw 0x40 ; clear TRISC, apart from bit6 for 1187.5 input
; movwf TRISC
; clrf INTCON
; bsf OPTION_REG, NOT_RBPU
; ; disable pull-ups on port B
; movlw 0xFF
; movwf ADCON1 ; Port E is digital
; bcf STATUS, RP0 ; Select bank 0
;
; call STORE_CONSTANT_DATA

; call INIT_LCD ; Initialise the LCD

; movlw LCD_LINE1
; call SET_ADDR ; LCD set on Line 1, character 1
; call GREETING ; Greets the USER

; call LONG_DELAY

; movlw LCD_LINE2
 call SET_ADDR ; LCD set on Line 2, character 1
; call INTRODUCE

; call LONG_DELAY

; call LCD_CLEAR ; clear display

; movlw LCD_LINE1
; call SET_ADDR ; LCD set on line 1, character 1
; call DECIDE ; Makes decision

; call LONG_DELAY

; movlw LCD_LINE2
; call SET_ADDR ; LCD set on Line 2, character 1
; call QUESTION

; call CHECK_SWITCH ; Check for answer
; call SWITCH_DELAY

RDS Encoder Project Hamed Haddadi 40

; call LCD_CLEAR
; movlw LCD_LINE1
; call SET_ADDR ; LCD cleared, line1
; btfsc DECISION,0 ; Skip to restore previous settings
; call GET_PS ; Get and store the new PS
; call SWITCH_DELAY

; call RESTORE_PS ; Restore PS from EEPROM

; call LCD_CLEAR
; movlw LCD_LINE1
; call SET_ADDR
; call CRC_BUSY ; LCD displays that CRC is being calculated

; call LONG_DELAY

 call CRC_CALC ; calculate the CRC checkword values

 call LCD_CLEAR
 movlw LCD_LINE1
 call SET_ADDR
 call TRANSMIT_DISPLAY

 movlw LCD_LINE2
 call SET_ADDR
 call DISPLAY_PS ; Display the transmitted PS

 goto TRANSMIT ; Transmit the RDS groups

;##
; FUNCTION LIST
;##

STORE_CONSTANT_DATA ; stores the values of constants for transmission

 movlw 0xc0 ; Move 11000000 to PI upper register
 movwf PI_HIGH
 movlw 0x00 ; Move 00000000 to PI lower register
 movwf PI_LOW
 movlw 0x00
 movwf PI_CHCK1_HIGH ; PI checkword with offset A for first block
 movlw 0xd5
 movwf PI_CHCK1_LOW
 movlw 0x03
 movwf PI_CHCK3_HIGH ; PI checkword with offset C' for third block
 movlw 0x79
 movwf PI_CHCK3_LOW

 movlw 0x08 ; Block2 data for the first group
 movwf BLCK2_0HIGH
 movlw 0x08
 movwf BLCK2_0LOW
 movlw 0x01
 movwf BLCK2_0CHK_HIGH ; Checkword with offset B
 movlw 0xc2
 movwf BLCK2_0CHK_LOW

 movlw 0x08 ; Block2 data for the second group
 movwf BLCK2_1HIGH
 movlw 0x09
 movwf BLCK2_1LOW
 movlw 0x00 ; Checkword with offset B
 movwf BLCK2_1CHK_HIGH
 movlw 0x6b
 movwf BLCK2_1CHK_LOW

 movlw 0x08 ; Block2 data for the third group
 movwf BLCK2_2HIGH
 movlw 0x0a
 movwf BLCK2_2LOW
 movlw 0x02 ; Checkword with offset B
 movwf BLCK2_2CHK_HIGH
 movlw 0xb0
 movwf BLCK2_2CHK_LOW

 movlw 0x08 ; Block2 data for the fourth group
 movwf BLCK2_3HIGH
 movlw 0x0f
 movwf BLCK2_3LOW
 movlw 0x00 ; Checkword with offset B
 movwf BLCK2_3CHK_HIGH

RDS Encoder Project Hamed Haddadi 41

 movlw 0x58
 movwf BLCK2_3CHK_LOW

 return

;**
; INIT_LCD...... Module to initialise the display
;**
INIT_LCD
 call DELAY_30MS

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_5MS

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_125US

 movlw 0x38 ; 8-bit-interface, 2-lines... 0b00111000
 call LCD_CMND
 call DELAY_125US

 movlw 0x0F ; display On, curser On, blink On 0b00001111
 call LCD_CMND
 call DELAY_5MS

 movlw 0x01 ; display clear, 0b00000001
 call LCD_CMND

 return

GREETING
 movlw 'U'
 call LCD_CHAR
 movlw 'C'
 call LCD_CHAR
 movlw 'L'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'C'
 call LCD_CHAR
 movlw 'O'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 return

INTRODUCE
 movlw 'B'
 call LCD_CHAR
 movlw 'Y'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'H'
 call LCD_CHAR
 movlw 'A'
 call LCD_CHAR
 movlw 'M'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'H'
 call LCD_CHAR

RDS Encoder Project Hamed Haddadi 42

 movlw 'A'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw 'A'
 call LCD_CHAR
 movlw 'D'
 call LCD_CHAR
 movlw 'I'
 call LCD_CHAR
 return

DECIDE
 movlw 'R'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'O'
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'I'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'G'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 return

QUESTION
 movlw 'Y'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw '/'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'O'
 call LCD_CHAR
 movlw '?'
 call LCD_CHAR
 return

CHECK_SWITCH ; Polls switches for decision to restore setting
GET_IT btfsc SWITCH_PORT,0
 call D0_SET
 btfsc SWITCH_PORT,1
 call D1_SET
got btfss SWITCH_PORT,2
 goto GET_IT
 movf DECISION,W ; Check if D2 is not pressed
 andlw 0xff ; without making a decision
 btfsc STATUS,Z
 goto GET_IT ; if yes, loop until decision is made
 return

D0_SET
 call SWITCH_DELAY
 movlw 0x48
 call SET_ADDR ; LCD set on Line 2, character 9
 movlw 'N'
 call LCD_CHAR
 movlw 'O'
 call LCD_CHAR

RDS Encoder Project Hamed Haddadi 43

 movlw ' '
 call LCD_CHAR
 movlw 0x1
 movwf DECISION
 return

D1_SET
 call SWITCH_DELAY
 movlw 0x48
 call SET_ADDR ; LCD set on Line 2, character 9
 movlw 'Y'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw 0x2
 movwf DECISION
 return

PS_REQUEST
 movlw 'E'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'E'
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'P'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw ':'
 return

GET_PS
 call PS_REQUEST ; ask for PS to be entered
 movlw ' '
 movwf MIN_CHAR ; set the lower boundary
 movlw 'Z'
 movwf MAX_CHAR ; set the upper boundary

 movlw 0x40 ; Set position, line 2 character 0
 movwf POSITION
 call SET_ADDR
 movlw 'A'
 movwf CHARACTER
 call LCD_CHAR
 call GET_PS1
 movwf PS_1 ; store in variable

 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0 ; Write data and destination
 movwf EEDATA
 movlw 0x00
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x41 ; Set position, line 2 character 1
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS2
 movwf PS_2 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA

RDS Encoder Project Hamed Haddadi 44

 movlw 0x01
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x42 ; Set position, line 2 character 2
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS3
 movwf PS_3 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x02
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x43 ; Set position, line 2 character 3
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS4
 movwf PS_4 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x03
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x44 ; Set position, line 2 character 4
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS5
 movwf PS_5 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x04
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa

RDS Encoder Project Hamed Haddadi 45

 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x45 ; Set position, line 2 character 5
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS6
 movwf PS_6 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x05
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x46 ; Set position, line 2 character 6
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS7
 movwf PS_7 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x06
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 call SWITCH_DELAY

 movlw 0x47 ; Set position, line 2 character 7
 movwf POSITION
 movf CHARACTER,0
 call LCD_CHAR
 call GET_PS8
 movwf PS_8 ; store in variable
 bsf STATUS,RP1 ; Store in EEPROM
 bsf STATUS,RP0
 btfsc EECON1,WR ; Make sure there is no other WRITE in progress
 call DELAY_5MS
 bcf STATUS,RP0
 movwf EEDATA
 movlw 0x07
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1,EEPGD
 bsf EECON1,WREN
 movlw 0x55
 movwf EECON2
 movlw 0xaa
 movwf EECON2
 bsf EECON1,WR
 bcf EECON1,WREN
 clrf STATUS ; Select bank 0

 return

RDS Encoder Project Hamed Haddadi 46

GET_PS1 btfsc SWITCH_PORT,0 ; Increment Character if Switch 0 pressed
 call CHAR_UP
 btfsc SWITCH_PORT,1 ; Decrement Character if Switch 1 pressed
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS1
 return

GET_PS2 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS2
 return

GET_PS3 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS3
 return

GET_PS4 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS4
 return

GET_PS5 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS5
 return

GET_PS6 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS6
 return

GET_PS7 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS7
 return

GET_PS8 btfsc SWITCH_PORT,0
 call CHAR_UP
 btfsc SWITCH_PORT,1
 call CHAR_DOWN
 btfss SWITCH_PORT,2
 goto GET_PS8
 return

CHAR_UP
 call SWITCH_DELAY
 movf POSITION,0 ; set display position
 call SET_ADDR
 movf CHARACTER,0 ; move character to W register
 call check_max ; check if reached the upper boundary
 movf CHARACTER,0
 call LCD_CHAR
 return

check_max ; it checks mor the upper character
 movwf CHAR_TEMP ; store the character locally
 movf MAX_CHAR,0 ; now move MAX_CHAR to W register
 subwf CHAR_TEMP,0 ; subtract the two files
 btfsc STATUS,Z ; Is the result zero?? then we reached maximum
 goto SET2MAX ; keep the character as it is
 goto INCREMENT ; if not reached the max, increment the character

SET2MAX
 movf MAX_CHAR,0 ; Keep MAX_CHAR as the character of chioce
 return

INCREMENT

RDS Encoder Project Hamed Haddadi 47

 incf CHARACTER,1 ; increment the character
 return

CHAR_DOWN
 call SWITCH_DELAY
 movf POSITION,0 ; set display position
 call SET_ADDR
 movf CHARACTER,0 ; move character to W register
 call check_min ; check if reached the lower boundary
 movf CHARACTER,0
 call LCD_CHAR
 return

check_min ; it checks mor the lower character
 movwf CHAR_TEMP ; store the character locally
 movf MIN_CHAR,0 ; now move MIN_CHAR to W register
 subwf CHAR_TEMP,0 ; subtract the two files
 btfsc STATUS,Z ; Is the result zero?? then we reached minimum
 goto SET2MIN ; keep the character as it is
 goto DECREMENT ; if not reached the min, decrement the character

SET2MIN
 movf MIN_CHAR,0 ; Keep MIN_CHAR as the character of chioce
 return

DECREMENT
 decf CHARACTER,1 ; decrement the character
 return

RESTORE_PS ; Restore the PS characters from EEPROM

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x00
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS
 movwf PS_1
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x01
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_2
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x02
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_3
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x03
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_4
 call SWITCH_DELAY

RDS Encoder Project Hamed Haddadi 48

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x04
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_5
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x05
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_6
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x06
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_7
 call SWITCH_DELAY

 bsf STATUS,RP1
 bcf STATUS,RP0
 movlw 0x07
 movwf EEADR
 bsf STATUS,RP0
 bcf EECON1, EEPGD
 bsf EECON1, RD
 bcf STATUS,RP0
 movf EEDATA,0
 clrf STATUS ; Select bank 0
 movwf PS_8
 call SWITCH_DELAY

 return

CRC_BUSY
 movlw 'C'
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 movlw 'C'
 call LCD_CHAR
 movlw ' '
 call LCD_CHAR
 movlw 'C'
 call LCD_CHAR
 movlw 'A'
 call LCD_CHAR
 movlw 'L'
 call LCD_CHAR
 movlw 'C'
 call LCD_CHAR
 movlw 'U'
 call LCD_CHAR
 movlw 'L'
 call LCD_CHAR
 movlw 'A'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'I'
 call LCD_CHAR
 movlw 'O'
 call LCD_CHAR
 movlw 'N'

RDS Encoder Project Hamed Haddadi 49

 call LCD_CHAR
 movlw '.'
 call LCD_CHAR
 return

CRC_CALC ; CheckWord calculation for the PS
 call CRC_0 ; PS_1 and PS_2, for first transmission group
 call CRC_1 ; PS_3 and PS_4, for second transmission group
 call CRC_2 ; PS_5 and PS_6, for third transmission group
 call CRC_3 ; PS_7 and PS_8, for fourth transmission group
 return

CRC_0 ; Calculate the checkword for the first PS block
 movf PS_1,0
 movwf CHAR_HIGH ; move PS_1 to the upper working register
 movf PS_2,0
 movwf CHAR_LOW ; move PS_2 to the lower working register

 call CRC_INIT ; Initialise the registers
 call CRC_GEN ; Calculate CRC

 movf CRC_HIGH,0 ; Load W with CRC upper part
 xorlw 0x01 ; Add upper part of offset D
 movwf CHCKWRD_0_HIGH ; Store in Checkword upper part
 movf CRC_LOW,0 ; Load W with CRC lower part
 xorlw 0xb4 ; Add lower part of offset D
 movwf CHCKWRD_0_LOW ; Store in Checkword lower part
 return

CRC_1 ; Calculate the checkword for the second PS block
 movf PS_3,0
 movwf CHAR_HIGH ; move PS_3 to the upper working register
 movf PS_4,0
 movwf CHAR_LOW ; move PS_4 to the lower working register

 call CRC_INIT ; Initialise the registers
 call CRC_GEN ; Calculate CRC

 movf CRC_HIGH,0 ; Load W with CRC upper part
 xorlw 0x01 ; Add upper part of offset D
 movwf CHCKWRD_1_HIGH ; Store in Checkword upper part
 movf CRC_LOW,0 ; Load W with CRC lower part
 xorlw 0xb4 ; Add lower part of offset D
 movwf CHCKWRD_1_LOW ; Store in Checkword lower part
 return

CRC_2 ; Calculate the checkword for the third PS block
 movf PS_5,0
 movwf CHAR_HIGH ; move PS_5 to the upper working register
 movf PS_6,0
 movwf CHAR_LOW ; move PS_6 to the lower working register

 call CRC_INIT ; Initialise the registers
 call CRC_GEN ; Calculate CRC

 movf CRC_HIGH,0 ; Load W with CRC upper part
 xorlw 0x01 ; Add upper part of offset D
 movwf CHCKWRD_2_HIGH ; Store in Checkword upper part
 movf CRC_LOW,0 ; Load W with CRC lower part
 xorlw 0xb4 ; Add lower part of offset D
 movwf CHCKWRD_2_LOW ; Store in Checkword lower part
 return

CRC_3 ; Calculate the checkword for the fourth PS block
 movf PS_7,0
 movwf CHAR_HIGH ; move PS_7 to the upper working register
 movf PS_8,0
 movwf CHAR_LOW ; move PS_8 to the lower working register

 call CRC_INIT ; Initialise the registers
 call CRC_GEN ; Calculate CRC

 movf CRC_HIGH,0 ; Load W with CRC upper part
 xorlw 0x01 ; Add upper part of offset D
 movwf CHCKWRD_3_HIGH ; Store in Checkword upper part
 movf CRC_LOW,0 ; Load W with CRC lower part
 xorlw 0xb4 ; Add lower part of offset D
 movwf CHCKWRD_3_LOW ; Store in Checkword lower part
 return

CRC_INIT ; Initialise the registers
 clrf CHAR_BUF ; rotate left twice, through carry,
 bcf STATUS,C ; so that the 10^X factor can correctly
 rlf CHAR_LOW,1 ; be implemented, i.e. by adding an 8bit
 rlf CHAR_HIGH,1 ; all 0s register to the end of the data,
 rlf CHAR_BUF,1 ; and shifting to left twice to have another
 bcf STATUS,C ; 2 obits.

RDS Encoder Project Hamed Haddadi 50

 rlf CHAR_LOW,1
 rlf CHAR_HIGH,1
 rlf CHAR_BUF,1

 movlw 0x10 ; 16 left shifts, for the CRC calculation
 movwf ITERATIONS
 movf CHAR_BUF,0 ; shifting all to the right place
 movwf CRC_HIGH
 movf CHAR_HIGH,0
 movwf CRC_LOW
 movf CHAR_LOW,0
 movwf CRC_BUF1
 movlw 0x00 ; adding the last 8 zero's
 movwf CRC_BUF2

 movlw 0x05 ; Storing the g(x) polynomial in registers
 movwf GXPOLY_HIGH
 movlw 0xb9
 movwf GXPOLY_LOW

 return

CRC_GEN ; CRC generator routine
 bcf STATUS,C ; clear the carry bit
 rlf CRC_BUF2,1 ; left shift all the data by one bit,
 rlf CRC_BUF1,1 ; using carry flag, so the carry 1 or 0
 rlf CRC_LOW,1 ; will go to the LSB of next byte
 rlf CRC_HIGH,1

 btfsc CRC_HIGH,2 ; is the last bit a 1?
 call DO_XOR ; if yes, XOR the working registers with g(x)
 decfsz ITERATIONS,1 ; Decrement iterations, more bits left?
 goto CRC_GEN ; if yes, do another bit
 return

DO_XOR ; Modulo 2 division with the g(x)
 movf GXPOLY_LOW,0
 xorwf CRC_LOW,1
 movf GXPOLY_HIGH,0
 xorwf CRC_HIGH,1
 return

TRANSMIT_DISPLAY
 movlw 'T'
 call LCD_CHAR
 movlw 'R'
 call LCD_CHAR
 movlw 'A'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'S'
 call LCD_CHAR
 movlw 'M'
 call LCD_CHAR
 movlw 'I'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'T'
 call LCD_CHAR
 movlw 'I'
 call LCD_CHAR
 movlw 'N'
 call LCD_CHAR
 movlw 'G'
 call LCD_CHAR

 return

DISPLAY_PS ; Displays the currently transmitted PS
 movf PS_1,0
 call LCD_CHAR
 movf PS_2,0
 call LCD_CHAR
 movf PS_3,0
 call LCD_CHAR
 movf PS_4,0
 call LCD_CHAR
 movf PS_5,0
 call LCD_CHAR
 movf PS_6,0
 call LCD_CHAR
 movf PS_7,0
 call LCD_CHAR
 movf PS_8,0

RDS Encoder Project Hamed Haddadi 51

 call LCD_CHAR

 return

TRANSMIT ; Transmit the RDS data-stream
 call TRANSMIT_G0 ; Group 0
 call TRANSMIT_G1 ; Group 1
 call TRANSMIT_G2 ; Group 2
 call TRANSMIT_G3 ; Group 3
 goto TRANSMIT ; Loop forever

TRANSMIT_G0 ; Transmit the first group, with PS_1 & PS_2
 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send upper part of block 2
 movwf ITERATIONS
 movf BLCK2_0HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of block 2
 movwf ITERATIONS
 movf BLCK2_0LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of Block 2 checkword
 movwf ITERATIONS
 movf BLCK2_0CHK_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower byte of block2 checkword
 movwf ITERATIONS
 movf BLCK2_0CHK_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

RDS Encoder Project Hamed Haddadi 52

 movlw 0x08 ; Send lower byte of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_1
 movwf ITERATIONS
 movf PS_1,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_2
 movwf ITERATIONS
 movf PS_2,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_0_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_0_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 return

TRANSMIT_G1 ; Transmit the first group, with PS_3 & PS_4
 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send upper part of block 2
 movwf ITERATIONS
 movf BLCK2_1HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of block 2
 movwf ITERATIONS
 movf BLCK2_1LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of Block 2 checkword
 movwf ITERATIONS
 movf BLCK2_1CHK_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower byte of block2 checkword
 movwf ITERATIONS
 movf BLCK2_1CHK_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

RDS Encoder Project Hamed Haddadi 53

 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_1
 movwf ITERATIONS
 movf PS_3,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_2
 movwf ITERATIONS
 movf PS_4,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_1_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_1_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 return

TRANSMIT_G2 ; Transmit the first group, with PS_1 & PS_2
 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send upper part of block 2
 movwf ITERATIONS
 movf BLCK2_2HIGH,0
 movwf TRX_BUF

RDS Encoder Project Hamed Haddadi 54

 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of block 2
 movwf ITERATIONS
 movf BLCK2_2LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of Block 2 checkword
 movwf ITERATIONS
 movf BLCK2_2CHK_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower byte of block2 checkword
 movwf ITERATIONS
 movf BLCK2_2CHK_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_1
 movwf ITERATIONS
 movf PS_5,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_2
 movwf ITERATIONS
 movf PS_6,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_2_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_2_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 return

TRANSMIT_G3 ; Transmit the first group, with PS_1 & PS_2
 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0

RDS Encoder Project Hamed Haddadi 55

 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset A
 movwf ITERATIONS
 movf PI_CHCK1_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send upper part of block 2
 movwf ITERATIONS
 movf BLCK2_3HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of block 2
 movwf ITERATIONS
 movf BLCK2_3LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of Block 2 checkword
 movwf ITERATIONS
 movf BLCK2_3CHK_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower byte of block2 checkword
 movwf ITERATIONS
 movf BLCK2_3CHK_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the top byte of PI
 movwf ITERATIONS
 movf PI_HIGH,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send the lower bye of PI
 movwf ITERATIONS
 movf PI_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send top two bits of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles
 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PI checkword offset C'
 movwf ITERATIONS
 movf PI_CHCK3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_1
 movwf ITERATIONS
 movf PS_7,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send PS_2
 movwf ITERATIONS
 movf PS_8,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 movlw 0x02 ; Send the top two bits of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_3_HIGH,0 ; Move the whole byte
 movwf TRX_BUF
 swapf TRX_BUF,1 ; Swap nibbles

RDS Encoder Project Hamed Haddadi 56

 rlf TRX_BUF,1 ; Rotate left twice, to bring the first bit
 rlf TRX_BUF,1 ; of the two bits to the MSB location
 call TRANSMIT_BUF_DATA

 movlw 0x08 ; Send lower byte of PS checkword
 movwf ITERATIONS
 movf CHCKWRD_3_LOW,0
 movwf TRX_BUF
 call TRANSMIT_BUF_DATA

 return

TRANSMIT_BUF_DATA ; Transmit the data byte held in the buffer
 rlf TRX_BUF,1 ; Rotate left once, in itself
 btfss STATUS, C ; Test the carry flag value
 call TRANSMIT_0 ; is carry 0? transmit a 0
 btfsc STATUS, C
 call TRANSMIT_1 ; Is carry 1? transmit a 1
 decfsz ITERATIONS,1 ; Decrement iteration until it reaches 0
 goto TRANSMIT_BUF_DATA
 return

TRANSMIT_0
; call DELAY_125US
 btfss RDS_PORT,SIGNAL ; Is 1187.5 high?
 goto TRANSMIT_0 ; No? then loop until it goes high
 bcf RDS_PORT, RDS_DATA ; Clear the port bit, 0 will be modulated
 return

TRANSMIT_1
; call DELAY_125US
 btfss RDS_PORT,SIGNAL ; Is 1187.5 high?
 goto TRANSMIT_1 ; No? then loop until it goes high
 bsf RDS_PORT, RDS_DATA ; Set the port bit, 1 will be modulated
 return

;===
; LCD_CHAR
; Sends character to LCD
; Required character must be in W
;===
LCD_CHAR
 movwf LCD_TEMP ; Character to be sent is in W
 call LCDBUSY ; Wait for LCD to be ready
 bcf LCD_CTRL, RW ; Set LCD in read mode
 bsf LCD_CTRL, RS ; Set LCD in data mode
 bsf LCD_CTRL, E ; LCD E-line High
 movf LCD_TEMP, W
 movwf LCD_DATA ; Send data to LCD
 bcf LCD_CTRL, E ; LCD E-line Low
 return
;===
; LCD_CMND
; Sends command to LCD
; Required command must be in W
;===

LCD_CMND
 movwf LCD_TEMP
 call LCDBUSY ; Wait for LCD to be ready
 bcf LCD_CTRL,RS ; Set LCD in read mode
 bcf LCD_CTRL,RW ; Set LCD in command mode
 bsf LCD_CTRL,E ; LCD E-line High
 movf LCD_TEMP, W
 movwf LCD_DATA ; Send data to LCD
 bcf LCD_CTRL,E ; LCD E-line Low
 return

;===
; LCDBUSY
; Returns when LCD busy-flag is inactive
; OK
;===
LCDBUSY
 bsf STATUS,RP0 ; Select Register page 1
 movlw 0xFF ; Set PORTB for input
 movwf TRISB
 bcf STATUS, RP0 ; Select Register page 0
 bcf LCD_CTRL, RS ; Set LCD for command mode
 bsf LCD_CTRL, RW ; Setup to read busy flag
 bsf LCD_CTRL, E ; LCD E-line High
 movf LCD_DATA, W ; Read busy flag + DDram address
 bcf LCD_CTRL, E ; LCD E-line Low

RDS Encoder Project Hamed Haddadi 57

 andlw 0x80 ; Check Busy flag, High = Busy
 btfss STATUS, Z
 goto LCDBUSY ; Loop back if busy
 bcf LCD_CTRL, RW
 bsf STATUS, RP0 ; Select Register page 1
 movlw 0x00
 movwf TRISB ; Set PORTB for output
 bcf INTCON, RBIF
 bcf STATUS, RP0 ; Select Register page 0
 return
;***

;* SET_ADDR
 *
;* sets the start address in LCD DDRAM for writing characters to the LCD
 *
;* Load the lcd address you wish to write to into the w register before calling
routine *
;***

SET_ADDR
 iorlw 0x80 ;combine address(a) in w to give 1aaa aaaa
 call LCD_CMND ;send byte in w to LCD data lines
 call DELAY_125US ;delay 125 microsecond
 return

;***
; LONG_DELAY
; Uses a very long delay to allow the user to see the data on the LCD
;***

LONG_DELAY
 movlw 0x4f ; Decimal value to give a long delay
 movwf CNT_DELAY3
rep_3 call DELAY_30MS
 decfsz CNT_DELAY3,1
 goto rep_3
 return
;***
; SWITCH_DELAY
; Uses a long delay to allow the switch to over-come debounce problems
;***

SWITCH_DELAY
 movlw 0x20 ; Decimal value to give a long delay
 movwf CNT_DELAY3
rep_4 call DELAY_30MS
 decfsz CNT_DELAY3,1
 goto rep_4
 return

;***

;* DELAY_125US
 *
;* uses repeated instruction cycles to create approximate 125 microsecond delay
 *
;* using a 4Mhz clock on the pic.(42x3 cycles of 1us)
 *
;***

DELAY_125US
 movlw US125 ; decimal value 42 loaded into w register

 movwf CNT_DELAY1 ; move 42 into cnt_delay1 register
repeat decfsz CNT_DELAY1,1 ; decrease count by 1 and check if zero (1 instruction
cycle)
 goto repeat ; decfsz will skip this if count was zero
 return

;***

;* DELAY_5ms
 *
;* uses repeated instruction cycles to create approximate 5ms delay (39x130x1 cycle of
1us) *
;* using a 4Mhz clock on the pic. (130 because 125+5 cycles from this routine)
 *
;***

DELAY_5MS
 movlw MS5 ;decimal value 39 loaded into w register
 movwf CNT_DELAY2 ;move 39 into count2 register

RDS Encoder Project Hamed Haddadi 58

rep2 call DELAY_125US ;call routine for 125 microsecond delay(2 instruction
cycle)
 decfsz CNT_DELAY2,F ;decrease count2 by 1 and check if zero (1 instruction
cycle)
 goto rep2 ;decfsz will skip this if count2 was zero(2 instruction
cycle)
 return

;***

;* END OF DELAY_5ms
 *
;***

;***

;* DELAY_30ms
 *
;* uses repeated instruction cycles to create approximate 30ms delay (231x130x1 cycle
of 1us) *
;* using a 4Mhz clock on the pic. (130 because 125+5 cycles from this routine)
 *
;***

DELAY_30MS
 movlw MS30 ; decimal value 231 loaded into w register
 movwf CNT_DELAY2 ; move 240 into cnt_delay2 register
rep_2 call DELAY_125US ; call routine for 125 microsecond delay
 decfsz CNT_DELAY2,1 ; decrease count2 by 1 and check if zero (1 instruction
cycle)
 goto rep_2 ; decfsz will skip this if count2 was zero
 return

;===
; LCD_CLEAR
; Clears display and returns cursor to home position (upper-left corner).
;
;===
LCD_CLEAR
 movlw 0x01 ; Move the value for lcd clear command
 call LCD_CMND
 retlw 0x00

 END

RDS Encoder Project Hamed Haddadi 59

B. Bi-Phase.asm

;**
; *
; Filename: biphase.asm *
; Date: 05/03/03 *
; *
; Author: hhaddadi *
;**
; *
; Notes: To generate biphase symbols from port B *
;**

 list p=16c622 ; list directive to define processor
 #include <p16c622.inc> ; processor specific variable definitions

 __CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _XT_OSC

;***** VARIABLE DEFINITIONS**
CLK11875 EQU 1
CLK2375 EQU 2
RDS EQU 3

PULSEHIGH EQU 4
PULSEDOWN EQU 6

US51 EQU 0x21 ; value to give a 51 microsecond in delay loop
CNT_DELAY1 EQU 0x22 ; temporary count register for 51us delay routine
MEMORY EQU 0x23

;**

 org 0x00
RESET goto MAIN

MAIN

 clrf STATUS ; Do initialization, Select bank 0
 bsf STATUS,RP0 ; Select Bank 1
 clrf TRISA ; Port A as output to save power
 clrf TRISB ; PORT B is output
 bsf OPTION_REG,NOT_RBPU ; Disable week Pull ups
 movlw 0x0E
 movwf TRISB ; Declare pins 0&1 of port B as
inputs
 clrf STATUS
generate
 call poll11875
 call signal_pulse
 call DELAY_51US ; To by-pass the clock's high-signal
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call poll2375
 call clear_pulse
 call DELAY_51US ; To by-pass the clock's high-signa
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US
 call DELAY_51US

 goto generate

poll11875
 btfss PORTB,CLK11875
 goto poll11875
 return
signal_pulse
 btfss PORTB, RDS
 goto PULSE_DOWN
 goto PULSE_HIGH

poll2375
 btfss PORTB, CLK2375
 goto poll2375
 return

clear_pulse
 btfsc MEMORY,0

RDS Encoder Project Hamed Haddadi 60

 goto PULSE_DOWN
 goto PULSE_HIGH

PULSE_HIGH
 bsf PORTB, PULSEHIGH
 call DELAY_51US
 bcf PORTB, PULSEHIGH
 bsf MEMORY,0
 return

PULSE_DOWN
 bsf PORTB, PULSEDOWN
 call DELAY_51US
 bcf PORTB, PULSEDOWN
 bcf MEMORY,0
 return

;**
;* DELAY_51US
 *
;* uses repeated instruction cycles to create approximate 51 microsecond delay*
;* using a 10Mhz clock on the pic.(42x3 cycles of 0.4us)
 *
;**

DELAY_51US
 movlw US51 ; decimal value 42 loaded into w register

 movwf CNT_DELAY1 ; move 42 into cnt_delay1 register
repeat decfsz CNT_DELAY1,1 ; decrease count by 1 and check if zero (1 instruction
cycle)
 goto repeat ; decfsz will skip this if count was zero
 return

 END ; directive 'end of program'

RDS Encoder Project Hamed Haddadi 61

C. Data source PCB

RDS Encoder Project Hamed Haddadi 62

D. Project time plan

RDS Encoder Project Hamed Haddadi 63

9. References

1. United States RBDS Standard, April 9, 1998
2. www.microchip.com for MPLAB IDE use
3. Microchip PIC 16F87X Data Sheet
4. Microchip PICmicro Mid-Range MCU Family reference Manual
4. RDS: The Radio Data System: Dietmar Kopitz, Bev Marks
5. How to use intelligent LCDs: Julyan Ilet
6. Hitachi HD44780 LCD Controller/Driver manual
7. Microchip AN587 Interfacing PICmicro to an LCD module
8. TRIMOD LCD Specification
9. Microchip EEPROM Memory Programming specification
10. A Painless guide to CRC error detection algorithm: Ross Williams
11. Microchip AN730 CRC Generating and Checking
12. RDS Encoder Project: Tim Shaw (of EE)
13. RDS Encoder Project: Richard Koch (of EE)
14. HC-49 Quarts Crystal data sheet
15. AV Series Push Button Switches data sheet
16: Basic Communication Theory: John Pearson
17: CRC, Easier said than done: Michael Barr
18: www.farnell.co.uk
19: Electronic circuits III: Paul V Brennan, EEE
20: Digital Circuits: Chris Pitt, EEE
21: Microchip PIC16C622 datasheet

Author:
Hamed Haddadi, Department of Electronics & Electrical Engineering UCL, Torrington Place,
London WC1E 7JE h.haddadi@ucl.ac.uk

12 Lionel House, 370 Portobello Rd, London W10 5RP hamedhaddadi@hotmail.com

RDS Encoder Project Hamed Haddadi 64

10. Component datasheets

