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Abstract 
 

“kOS” is the name given to a “kind of Operating System” which is the 

processing heart of the nodes that are used in the SECOAS project. SECOAS is a 

research project which aims to investigate a range of novel and emerging technologies 

needed to create self-organizing networks of microcontrollers, integrate the best ideas 

into a sensor network, and prove that the network can be used by scientists to meet the 

needs of a dynamic and challenging sensing application. 

The operational requirements of the SECOAS project has led to unique 

features of kOS; it is very simple, it has a very small footprint (16 Kbytes) and yet it 

allows data distribution and execution of networked algorithms, therefore ensuring a 

powerful, robust and reliable overall system architecture. 

One of the most important requirements from a microcontroller-based sensor 

network node is efficiency. It is extremely hard, if not impossible, to change batteries 

of these nodes when deployed in harsh environments. The operating system must be 

able to manage the resources carefully, using the individual modules only when 

required and turn them off as soon as their scheduled tasks are completed. It must also 

be able to recover successfully from unexpected errors and allow re-programmability 

and distribution of new performance policies through the network. 

In the context of this project, various aspects within the operating system of 

wireless sensor networks are investigated using the kOS operating system. The main 

objective of this project is to increase the efficiency and power awareness of kOS 

using short-wake and long-sleep duty cycles, predictive task scheduling of nodes with 

minimum interruption to the system operation and smart use of different clocking 

methods to offer the least possible power budget figures. 

This report contains a brief introduction to wireless sensor networks and their 

applications, operating systems deployed in the sensor nodes, development of kOS 

and its characteristics, efficiency issues in kOS and a summary of improvements that 

can be achieved using energy-aware algorithms and power-efficiency techniques. 
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1. Introduction to the project 
The field of telecommunication has been experiencing tremendous changes in the 

last two decades. The universal growth and penetration of the internet and the World 

Wide Web, need for network technologies as a result of sudden growth in computing 

power and Moorse Law, the introduction of mobile phones and the sudden increase in 

their deployments are just a few of the examples of technological and business 

advancements in this field. 

Recently the technology improvements in the area of wireless telecommunications 

have led to an exciting research field into deployment of wireless sensor networks. A 

sensor is a device that responds to a physical stimulus, such as thermal energy, 

electromagnetic energy, acoustic energy, humidity, RF Signal Strength, pressure or 

motion, by producing a signal, usually electrical. Sensor networks consist of a 

collection of microcontroller-based nodes that are equipped with sensors and are used 

for measurement and monitoring activities. Sensor networks are often mistaken for 

ad-hoc networks of wireless computers. The number of sensor nodes in a sensor 

network can be many orders of magnitude higher than the nodes in an ad-hoc network 

and also sensor networks are usually used for broadcast communication, whereas 

most ad hoc networks are based on point-to-point communications. 

Environmental monitoring is one of the greatest areas of deployments of sensor 

networks. Currently, oceanographic studies frequently involve using large, expensive 

devices to log data, typically for several months at a time. During each deployment, 

there are substantial risks that the platform will be damaged or destroyed. This 

approach also has the disadvantage that the sensors measure environmental 

phenomenon only at one physical location. An alternative is to use a network of 

sensors to build a spatial-temporal picture of the environment. This leads to a system 

that is robust even when nodes are destroyed or the network topology changes. 

Furthermore, nodes can be added at will or reconfigured for various purposes. The 

availability of increasingly low-cost microprocessors and radio devices has made this 

approach feasible from an economic point of view. 

Following this approach, SECOAS project was designed to be an autonomous 

network of simple sensors that are influenced partially through the use of user-

forwarded policies, but which primarily coordinate themselves with adaptive 
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behaviour. In this network, data is efficiently and continuously collected from the 

network with predictable levels of performance and delay. Moreover, mechanisms for 

energy savings at foreseeable intervals without serious impact on transport capacity 

and overhead are required. Data transport is maintained and gracefully reconfigured 

after individual or collective failure. A summary of the project and related research 

issues are addressed in  [I]. Figure 1 shows the top-level view of the system 

components. In the figure, there is one base-station node on the land and a number of 

floating sensor nodes in the ocean. The base-station node sets receive and transmit 

timing of nodes in a hierarchy that is formed by its inducing transmissions. In real 

deployment scenario there may be more base-station nodes, some within the ocean 

environment, and the current estimate of distance between the nodes is around 1km. 

This may change in time due to ocean environment and drift on the sand bank. More 

on this is addressed in  [II]. Policies flow to the network from the base-station, whilst 

data flows back to shore from the sensor nodes [ 1]. 

 

 
 

Figure 1: System Components [ 1] 

 

The kOS operating system is developed at UCL EE laboratories as a unique and 

innovative Real Time Operating System (RTOS) to support these aims in the context 

of the SECOAS project. It is a simple, very small footprint (16 Kbytes) operating 

system designed to support intrinsically networked applications on a basic 

microcontroller unit (MCU). This project aims to investigate the development and 

efficiency of kOS. 
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1.1 The aims of the project 

In the context of this project, the aims are: 

• To develop certain requirements of the kOS architecture, including data 

communication, and to look at the competence of kOS when compared with 

other operating systems developed in this arena.  

 

• To study into power efficiency and implementation of energy saving 

techniques, effective data communication strategies and maximum resource 

utilization. 

 

• To design and test methods to minimize the power usage of the sensor nodes 

and to calculate life on batteries in different configurations. 

 

• To consider the effectiveness of idle and active states and compare the 

latencies and devise competent methods for compromising between the use of 

different systems states and complexity of task operations. 

 

1.2 Project context and motivation 

Sensor networks are one of the most innovative ideas which researchers across the 

world are working on. Every day many new papers are published on new technologies 

deployed in this field and there are increasing number of application-specific projects 

looking at feasibility of sensor networks for environmental, security and marketing 

monitoring applications. Distributed Sensor networks are used in many different 

configurations and varieties, from fixed sensor nodes to mobile nodes, from wired 

communications to wireless RF devices, from static network topology to dynamically 

changing topology. However these technological advances have also brought new 

challenges to processing large amounts of data in a bandwidth-limited, power-

constrained, unstable and dynamic environment [ 6]. In any embedded system design, 

the power efficiency of the system tends to be one of the most important issues. This 

is due to the fact that the system may spend days and weeks in idle stage and it is 

usually hard to change the batteries of these embedded systems. Hence in most sensor 
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network systems, specific attention should be paid to the design of an optimum 

operating system for the application.  

SECOAS project started in September 2003 in order to explore the employment of 

self-organizing sensor networks for environmental monitoring applications. The 

project is DTI funded under the Next Wave Technologies and Markets program. The 

main objectives of the SECOAS project are: 

• To discover and demonstrate decentralized algorithms that enable automated 

adaptation to failures, upgrades and requirement changes in a distributed 

network of micro-controllers (smart sensors) 

• To investigate and demonstrate novel cooperative adaptive data handling 

techniques 

• Design lightweight, low power, ad-hoc wireless communication protocols that 

can adapt to a wide range of physical layer media, and support a range of end 

to end guarantees for network services 

• To explore methods for implementing locally intelligent sensors capable of 

dynamic self-configuration 

• To develop and test an appropriate control interface for scientific user 

communities 

• To demonstrate and prove the new technologies in a realistic application 

context  

• To undertake a major re-evaluation of environmental sensing field 

methodologies, and design new approaches that fully exploit the new 

technology [ 4]. 

 

The deployment area is the Scroby Sands Wind Farm [ 5] where the sea bed 

movements will be monitored. The project partners include University College 

London, University of East Anglia, BTexact Laboratories, Intelisys, University of 

Essex, Plextek and Engineering and Physical Sciences Research Council. The 

outcome of the SECOAS project will benefit the researchers of telecommunications 

and system design to get more familiar with sensor network systems. On completion, 

the sensor nodes and their operation will enable a thorough investigation of effects of 

wind farms and environmental characters of the deployment area and the result will 
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directly affect future operation of offshore wind farms in areas where they can have 

an adverse effect on the wild life or the environment.  

The development of the kOS Operating System started in summer 2003, with the 

first version and the user guide being released by the author at August 2003. Since 

then the development on the kOS has been continued in simulation, with specific 

emphasis on the networking and data transfer algorithms. However as the project 

proceeds towards the implementations stage, the analysis of power budget calculation, 

efficiency of the operating systems, data transfer link utilization and MCU power 

requirements in terms of sleep cycles becomes critical. This project aims to 

investigate the power issues within the kOS, while developing the necessary software 

algorithms and hardware platform to enable task scheduling, sleep cycles and data 

transfer from the sensor modules to the MCU and from the MCU to the radio units 

used to transmit the data on Radio Frequency (RF) links to the base station nodes. The 

deployment of the sensor nodes in ocean means that they should run for as long as 

possible without any need to change batteries and every care must be taken to use the 

resources carefully in order to minimize the amount of current drawn from the 

batteries.  

Currently kOS does not support sleep mode and hence the applications can run to 

completion or they may reschedule themselves for execution while the MCU is 

awake. Radio communication is usually is the most battery-intensive function in the 

sensor networks. This includes the energy spent on turning on the radio modules to 

send data, and also on energy spent on leaving the receivers on in order to listen out 

for incoming packets so it is not economical to leave the receive channels on idle 

mode waiting for data to arrive at random times. This brings out the importance of 

scheduling for applications. Another important issue that rises here is the utilization of 

communication links and the importance to decrease the time spent on data 

communications in order to send the MCU to sleep as soon as possible and to turn off 

the radio module of the MCU. 

Similar work has been done before at a few other projects using sensor networks. 

Researchers at University of California, Berkeley, have proposed flexible power 

scheduling, a distributed on-demand power-management protocol for collecting data 

in sensor networks. Flexible Power Scheduling aims to reduce radio power 

consumption while supporting fluctuating demand in the network. This work has been 

implemented in the “TinyOS” which is the heart of the Smart Dust project. Recently 



Introduction to the project 

kOS 6 Hamed Haddadi 

the EYES project has addressed problems such as distributed information processing, 

wireless communications and mobile computing based on battery management and 

change in operation upon reaching lower energy levels. Some of the related projects 

will be discussed in more details in the next section. however Many of the related 

projects have implemented either general Operating System environments, or have 

used traditional communication protocols, both of which are too heavy for 

requirements of SECOAS and its goals, which aim to generate a lightweight 

application specific environment, while allowing for future modification and re-

programmability for other applications and potential commercial products.  

 

1.3 Layout of the report 

The outline of the report is discussed in this section. Chapter 2 gives a brief 

overview of sensor networks and their applications within the area of 

telecommunication. Some of the projects that involve use of sensor networks are 

discussed in this chapter. It is essential to familiarize the intended readers with the 

general concept of sensor networks; however this section can be skipped by the 

specialized readers. 

Chapter 3 introduces the Operating Systems of the various important sensor 

networks developed recently. In this chapter a brief review of the general 

requirements of the Operating System is collected and they are compared with the 

requirements of the SECOAS project. 

Chapter 4 describes the development of kOS and its architecture. The main 

concepts behind kOS, the operation of kOS, its unique characteristics, task scheduling 

and data handling is discussed in this section. This chapter will also introduce the 

implementation of kOS on software simulation and hardware emulation platform. 

Chapter 5 discusses the analysis of efficiency issues within kOS. Suggestions for 

improvements, energy saving algorithms, their implementation and effects on the 

overall systems are discussed in this section. 

Chapter 6 explains the improvements gained in the operation of kOS by analyzing 

the result of the experiments performed and it argues the outcomes versus the main 

goals of the project. 

Chapter 7 summarizes the achievements of the project and suggests the future 

work which can be ensued to improve the concepts behind this project. 
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2. Sensor networks and their applications 
In this chapter a brief review of the recent developments in the field of sensor 

networks, alongside some example projects is presented. After reading this section the 

reader will be more familiar with the general architecture of sensor networks and their 

potential applications. Some of the most important relevant research projects are also 

explained and referenced in this section. 

 

2.1 Defining sensor networks 

Sensor networks are usually defined as a collection of distributed microcontroller-

based devices that are used to monitor the environment and produce a measurable 

response to a change in physical condition (such as temperature) or in chemical 

condition (such as concentration). Sensor networks have recently been the hub of 

activity of many telecommunication research groups around the world and their 

development has led to a rapid growth in the variety of applications, implementations 

and protocols. They are a major part of new research initiatives into Ambient 

Intelligence and ubiquitous computing. Recently, the concepts of high data rate (such 

as imaging or video sensors for security applications) and even mobile sensor nets are 

being considered for trials. Some of the characteristics of sensor networks are listed 

here: 

• Made up of hundreds or thousands small autonomous nodes  

• Use wireless technology to communicate  

• Require low data rates, from a few bits per second (bps) to a few kbps  

• Subject to energy/power constraints (i.e. battery operated)  

• Interfaced into control or monitoring systems  

• Necessitate low latency and survivable communications [ 7]  

 

Sensor networks are always formed by a cluster of cheap, small and low power 

devices composed by integrating low power analogue, digital and RF electronic 

devices. Every network is typically consisted of many hundreds of these nodes. 

Sensor nodes are usually fitted with an on-board microcontroller unit, so Instead of 

sending the raw data to the nodes responsible for data fusion, the nodes use their 

processing abilities to locally carry out simple computations and transmit only the 
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required and partially processed data. Even though the MCU-based nodes may have 

limited memory and data processing, when collaborated together in form of a large 

distributed wireless system, they can communicate with each other to produce 

intelligent data processing and execute intense monitoring, self-organising and 

location-based algorithms. 

Sensor nodes collaborate to be able to cope with the environment: sensor nodes 

operate completely wireless, and are able to spontaneously assemble themselves into a  

network, dynamically adapt to device failure and degradation, manage movement of 

sensor nodes, and react to changes in task and network requirements. Despite these 

dynamic changes in configuration of the sensor network, critical real-time information 

must still be disseminated dynamically from mobile sensor data sources through the 

self-organising network infrastructure to the applications and services. 

Sensor network systems will enhance usability of appliances, and provide 

condition-based maintenance in the home. These devices will enable fundamental 

changes in applications spanning the home, office, clinic, factory, vehicle, 

metropolitan area, and the global environment. Sensor node technology enables data 

collection and processing in a variety of situations, for applications, which include 

environmental monitoring, context-aware personal assistants (tracking of location, 

activity, and environment of the user), home security, machine failure diagnosis, 

medical monitoring, and surveillance and monitoring for security [ 8]. The main 

objective of using Sensor Nodes in most situations is to avoid having a single point of 

failure in monitoring applications which have to run un-corrupted for many months. 

The sensor nodes are smaller, cheaper and less prone to failure. The packages can be 

physically designed and embedded in a way that maximum protection from 

environmental hazards is possible. They are designed to minimise the huge costs of 

powerful and complex centralised data collection and processing platforms which 

usually get implemented at hazardous environments or in the middle of sea beds and 

oceans and oil plants. 

Amongst the many bright ideas used in sensor networks is the idea of Self-

Organisation. Self-Organisation is a capability achieved by using a set of clever 

algorithms, which are activated upon loss of sensor nodes are more important master 

nodes. The effect of Self-Organisation is creation of a new network topology where 

the duties and responsibilities of the lost nodes are distributed between the 
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surrounding sensor nodes in their neighbourhood to ensure minimum interruption in 

data collection and task distribution.  

The biologically inspired idea of dynamic network set-up is extremely important 

in areas where thousands of sensors are randomly distributed, for example those 

thrown out of an airplane in an ocean [ 9]. The flexibility and operation of such a 

network is certainly dependant on how fast a network in an ad-hoc manner can be set 

up. This approach leads to a set of functional requirements. The nodes must be able to 

configure themselves for monitoring period in space and time, be able to condense 

data and minimize communication overhead back to the base station, be able to 

substitute for each other in case of failure, and be able to locate themselves, relative to 

other nodes, or by using Global Positioning Systems (GPS).The nodes must respond 

to changes in the environment (both the monitored environment and the network) as 

autonomously as possible. There is a need for a general, localised control system at a 

higher level [ 4]. Some of these requirements will be discussed in more details in the 

next sections. 

 

2.2 Applications of sensor networks 

The research into sensor network applications was originally initiated for military 

purposes such as battlefield surveillance and enemy tracking. However, just like the 

internet, sensor networks quickly found their way into commercial and civil 

applications. Today researchers across the world are looking into the implementation 

of sensor networks in areas such as: 

• Chemical, biological and nuclear detection and monitoring  

• Traffic observation, detection and management  

• Industrial control systems  

• Portable and mobile site monitors  

• Security and video monitoring systems  

 

In this section a brief outline of the current areas of use of sensor networks and 

examples of the research projects and implementations are given. 
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2.2.1 Environmental monitoring 

Environment Observation and Forecasting Systems (EOFS) are large distributed 

systems that span large geographic areas and monitor, model and forecast physical 

processes, such as environmental pollution, flooding etc. Usually they consist of three 

components: sensor stations, a distribution network, centralized processing farm. 

Some of the characteristics of EOFS are: 

• Centralized processing: the environment model is very computational 

intensive; they usually run on a central server and process data gathered 

from the sensor network. 

• High data volume: for example, nautical X-band radar can generate 

megabytes of data per second. 

• Quality of Service (QoS) sensitivity: it defines the utility of the data; there 

is an engineering trade-off between QoS and energy constraint. 

• Extensibility 

• Autonomous operation[ 10] 

 

Some of the examples of environmental monitoring using sensor networks are 

listed below: 

 

I- CORIE: it is a prototype of environmental monitoring application for 

Columbia River. 13 stationary sensor nodes are deployed across the 

Columbia River estuary, 1 mobile sensor station drifts off-shore. Those 

sensor stations are usually fixed on a pier or a buoy. The stationary stations 

are powered by power grid, while the mobile station uses solar panel to 

harness solar energy. Sensor data are transmitted via wireless link toward 

onshore master stations. The data is then further forwarded to a centralized 

server and fed into a computationally intensive physical environment 

model. The output of the model is used to guide vessel transportation and 

forecasting. 

II- ALERT: Automated Local Evaluation in Real-Time is probably the first 

well-known wireless sensor network being deployed in real world. It was 

developed by the National Weather Service in the 1970's. ALERT 

provides important real-time rainfall and water level information to 
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evaluate the possibility of potential flooding. ALERT sensor sites are 

usually equipped with meteorological/hydrological sensors, such as water 

level sensors, temperature sensors, and wind sensors, data are transmitted 

via light-of-sight radio communication from the sensor site to the base 

station, a Flood Forecast Model is adopted to process those data and issue 

automatic warning, web-based query is available. Currently ALERT is 

deployed across most of the western United States and is heavily used for 

flood alarming in California and Arizona. 

III- Great Duck Island system: In August 2002, researchers from University 

College Berkeley (UCB) and Intel Research Laboratory deployed a mote-

based tiered sensor network on Great Duck Island, Maine, to monitor the 

behaviour of storm petrel. 

IV- PODS-A Remote Ecological Micro-Sensor Network: PODS is a research 

project in University of Hawaii that built wireless network of 

environmental sensor to investigate why endangered species of plants will 

grow in one area but not in neighbouring areas. They deployed 

camouflaged sensors node, called Pods, in Hawaii Volcanoes National 

Park. The Pods consist of a computer, radio transceiver and environmental 

sensors sometimes including a high resolution digital camera, relay sensor 

data via wireless link back to the Internet. Bluetooth and 802.11b are 

chosen as Medium Access Control (MAC) layers and data is delivered in 

Internet Protocol (IP) packets. Energy efficiency is identified as one of the 

design goals, an ad-hoc routing protocols called Multi-Path On-demand 

Routing was developed. Two types of sensor data are collected, weather 

data are collected every ten minutes and image data are collected once per 

hour, users can use Internet to access the data from a server in University 

of Hawaii. More information can be found in  [III]. 

 

2.2.2 Health Applications 

Applications in this category include monitoring of human physiological data, 

tracking and monitoring of doctors and patients inside a hospital. In the Smart Sensors 

and Integrated Microsystems (SSIM) project, retina prosthesis chips consisting of 100 

micro sensors are built and implanted within the human eye. The aim of the SSIM 
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project is to enable patients with no or limited vision to see distant objects at an 

acceptable level of clarity. The wireless communication is required to suit the need for 

feedback control, image identification and validation. Other similar applications 

include Glucose level monitors, Organ monitors, Cancer detectors and General health 

monitors. The idea of embedding wireless biomedical sensors inside human body is 

promising, although many additional challenges exist: the system must be extremely 

safe and reliable, require minimal maintenance and ideally attract energy from the 

body heat [ 10]. The work in the medical area requires clusters of extremely small 

sensors, with dimensions in orders of few millimetres, which can be embedded under 

the skin or planted in vital organs. This is an exciting and recent area of research and 

its scopes are beyond the field of this document. 

 

2.2.3 Commercial applications 

Sensor networks are implemented in various home, office and industrial 

applications. Some of the important projects are listed in this section. 

 

I- Structure Health Monitoring (SHM) System: SHM is another important 

domain for sensor network application. The widely accepted goals of SHM 

system include detecting damage, localizing damage, estimating the extent 

of the damage and predicting the residual life of the structure, as proposed 

in  [IV]. SHM has been an evolving technology since it was first proposed 

in 1990's, the latest approach, which uses wireless sensor networks, has 

many advantages: low deployment and maintenance cost, large physical 

coverage, high spatial resolution etc. One of the barriers is that damage 

detection is very difficult even for sophisticated sensors, thus breakthrough 

in damage detection using small MEMS sensors is much needed. So far, a 

SHM system using wireless sensor network technology is yet to emerge. 

II- Smart Energy: Societal-scale sensor network can greatly improve the 

efficiency of energy-provision chain, which consists of 3 components, the 

energy-generation, distribution, and consumption infrastructure. It is 

reported that 1 percent load reduction due to demand response can lead to 

a 10 percent reduction in wholesale prices, while a 5 percent load response 

can cut the wholesale price in half. In the wake of recent energy regulation 
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in California [ 11], proposes a gradual roll-out plan to make energy supply 

chain part of an integrated network of monitoring, information processing, 

controlling, and actuating devices, in a hope to spread the consumption of 

energy over time reducing peak demand. That would be a complex and 

long-term project [ 10]. 

 

2.3 Protocols and implementation techniques 

There is currently no standards organisation involved in the design and 

implementation of sensor networks. However, implementation of a distributed sensor 

network of wireless devices, like any other telecommunication network, needs clear 

definition of all the levels and protocols in the Open Systems Interconnect (OSI) 

stack. The International Standards Organisation (ISO) developed the OSI architectural 

model. Figure 2 shows the components of the OSI stack and example protocols. The 

term stack is used to show that in order to get from a layer in system to a layer in 

another system data needs to traverse through all the lower layers. 

 

 
 

Figure 2: OSI Stack (Figure courtesy of ISO [ 27]) 

 

The physical layer is a largely unexplored area in sensor networks. Open research 

issues range from power-efficient transceiver design to modulation schemes: 

• Modulation schemes: Simple and low-power modulation schemes need to be 

developed for sensor networks. The modulation scheme can be either base band, as in 

UWB, or pass band. 

• Strategies to overcome signal propagation effects  
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• Hardware design: Tiny, low-power, low-cost transceiver, sensing, and 

processing units need to be designed. Power-efficient hardware management 

strategies are also essential. Some strategies are managing frequencies of operation, 

reducing switching power, and predicting work load in processors. 

 

In the data-link layer, although some Medium Access Control (MAC) schemes 

have been proposed for sensor networks, link layer protocol design is still largely 

open to research. Key open research issues include: 

• MAC for mobile sensor networks: The proposed Self-Organizing Medium 

Access Control for Sensor Networks (SMACS) and the Eavesdrop-And-Register 

(EAR) algorithms [ 12] perform well only in mainly static sensor networks. It is 

assumed in the connection schemes that a mobile node has many static nodes as 

neighbours. These algorithms must be improved to deal with more extensive mobility 

in the sensor nodes and targets. Mobility issues, carrier sensing, and back-off 

mechanisms for the Carrier Sense Multiple Access (CSMA)-based scheme also 

remain largely unexplored. 

• Determination of lower bounds on the energy required for sensor network self-

organization 

• Error control coding schemes: Error control is extremely important in some 

sensor network applications like mobile tracking and machine monitoring. The 

feasibility of other error control schemes in sensor networks needs to be explored. 

• Power-saving modes of operation: To prolong network lifetime, a sensor node 

must enter into periods of reduced activity when running low on battery power. The 

enumeration and transition management for these nodes is open to research.  

The networking layer of sensor networks is usually designed according to the 

following principles: 

• Power efficiency is always an important consideration. 

• Sensor networks are mostly data-centric. 

• Data aggregation is useful only when it does not hinder the collaborative effort 

of the sensor nodes. 

• An ideal sensor network has attribute-based addressing and location awareness. 

 

Flooding is an old technique that can also be used for routing in sensor networks. 

In flooding, each node receiving a data or management packet repeats it by 
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broadcasting, unless the maximum number of hops for the packet is reached or the 

destination of the packet is the node itself. Flooding is a reactive technique, and it 

does not require costly topology maintenance and complex route discovery 

algorithms. A derivation of flooding is gossiping in which nodes do not broadcast but 

send the incoming packets to a randomly selected neighbour [ 13]. A sensor node 

randomly selects one of its neighbours to send the data. Once the neighbour node 

receives the data, it randomly selects another sensor node. Although this approach 

avoids the implosion problem by just having one copy of a message at any node, it 

takes a long time to propagate the message to all sensor nodes. 

The development of transport layer protocols is a challenging effort because the 

sensor nodes are influenced by the hardware constraints such as limited power and 

memory. As a result, each sensor node cannot store large amounts of data like a server 

in the Internet, and acknowledgments are too costly for sensor networks. Therefore, 

new schemes that split the end-to-end communication, probably at the sinks, may be 

needed where User Datagram Protocol (UDP)-type protocols are used in the sensor 

network and traditional Transmission Control Protocol (TCP)/UDP protocols in the 

Internet or satellite network. 

Implementation of each stack level protocol must be considered carefully in order 

to maximise the throughput of the system. For a brief description of some of the 

implementation architectures refer to  [V]. 

 

2.4 Research projects on sensor networks 

There are currently many research groups across the world working on different 

aspects of sensor networks, from the physical characteristics to application layer. 

Some of the most important projects and their context and scopes are briefly described 

in this section. 

 

2.4.1 Smart Dust Project 

Researchers at University of California, Berkeley (UCB) have been working on 

the Smart Dust project for many years. The goal of the Smart Dust project is to build a 

self-contained, millimetre-scale sensing and communication platform for a massively 

distributed sensor network.  Smart Dust nodes, called “motes”, are desired to be 
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around the size of a grain of sand and will contain sensors, computational ability, bi-

directional wireless communications, and a power supply, while being inexpensive 

enough to deploy by the hundreds.  The science and engineering goal of the project is 

to build a complete, complex system in a tiny volume using state-of-the art 

technologies (as opposed to futuristic technologies), which will require evolutionary 

and revolutionary advances in integration, miniaturization, and energy management. 

A mote consists of: 

• Processor: Atmel AVR ATmega 128L µcontroller: 

– 128KB flash ROM, 4KB RAM, 4KB EEPROM 

– Up to 8 MHz 

• Radio: Chipcon CC1000: 

– UHF transceiver (300 MHz – 1 GHz) 

– FSK modulation, up to 76.8 kBaud 

• Sensor boards 

 

In the Smart Dust network, three types of nodes are present: Application Nodes, 

which are in charge of running data processing tasks, Network Nodes, which 

synchronise the network, and Base Stations, which are the hubs for data 

communication with the main database. Figure 3 presents the proposed network 

architecture of the Smart Dust mote-based network. They envision that this smart dust 

will be integrated into the physical environment, perhaps even powered by ambient 

energy [ 14]. The motes use a main microcontroller and an extra one as a co-processor. 

The Smart Dust project has now finished, but many interesting ideas were developed 

as a result of this project, the most important one being the development of the 

TinyOS operating system, which is discussed in more detail in next chapter. 
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Figure 3: UCB Smart Dust network (Figure courtesy of UCB [ 11]) 

 

2.4.2 EYES Project 

The EYES project is a three years European research project, on self-organizing 

and collaborative energy-efficient sensor networks. It addresses the convergence of 

distributed information processing, wireless communications, and mobile computing. 

The project runs from March 2002 till February 2005 [ 15].  

The EYES network has two distinct key system layers of abstraction: the sensor 

and networking layer, and the distributed services layer. Each layer provides services 

that may be spontaneously specified and reconfigured. 

The sensor and networking layer contains the sensor nodes (the physical sensor 

and wireless transmission modules) and the network protocols. Ad-hoc routing 

protocols allow messages to be forwarded through multiple sensor nodes taking into 

account the mobility of nodes, and the dynamic change of topology. Communication 

protocols must be energy-efficient since sensor nodes have very limited energy 

supply. To provide more efficient dissemination of data, some sensors may process 

data streams, and provide replication and caching.  

The distributed services layer contains distributed services for supporting mobile 

sensor applications. Distributed servers coordinate with each other in order to perform 

decentralised services. These distributed servers may be replicated for higher 
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availability, efficiency and robustness. We have identified two major services. The 

lookup service supports mobility, instantiation, and reconfiguration. The information 

service deals with aspects of collecting data. This service allows vast quantities of 

data to be easily and reliably accessed, manipulated, disseminated, and used in a 

customized fashion by applications [ 15].  

On top of this architecture applications can be built using the sensor network and 

distributed services. Figure 4 displays the EYES sensor network architecture. 

 

 
 

Figure 4: EYES sensor network architecture [ 15] 

 

2.4.3 Bluetooth-based sensor networks 

Bluetooth is a short range (up to around 10 metres) RF connectivity protocol 

which has been the centre of attention of many manufacturers of home and mobile 

products for short range wire replacement. Bluetooth communicates on the frequency 

of 2.45 Gigahertz, which has been set aside by international agreement for the use of 

Industrial, Scientific and Medical (ISM) devices. Figure 5 shows the Bluetooth 

protocol stack. 
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Figure 5: Bluetooth protocol stack [ 16] 

 

The most important general attributes of Bluetooth are: 

• Use of Frequency Hop (FH) spread spectrum, which divides the frequency 

band into a number of hop channels. During a connection, radio transceivers 

hop from one channel to another in a pseudo-random fashion.  

• Supports up to 8 devices in a Pico-net (two or more Bluetooth units sharing a 

channel).  

• Built-in security. 

• Non line-of-sight transmission through walls and briefcases.  

• Omni-directional. Supports both isochronous and asynchronous services; easy 

integration of TCP/IP for networking [ 16].  

 

An ongoing research project at the Intelligent Systems Group at Malmo University 

is based on Bluetooth technology. A prototype Wireless Sensor Network consisting of 

one access point and several sensor point nodes based on Bluetooth technology has 

been developed and tested. The focus of the design work was the RFCOMM layer of 

the Bluetooth stack. The structure of the WSN, shown in Figure 6, is built up in such 

a way that an access point, represented by an Ericsson Bluetooth module attached to a 

PC, served as a controller, allowing sensors to send data on request. The sensors are 

implemented as true embedded objects, waiting for the access point to wake them up 

and start sending data [ 17]. 
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Figure 6: Sensor network using Bluetooth (Figure courtesy of Malmo University [ 17]) 

 

However the biggest disadvantage of Bluetooth is its extremely short range. It is 

impractical to use Bluetooth for large environmental monitoring projects. Another 

major obstacle when deploying Bluetooth protocol is its complicated stack and 

lengthy set-up time, which may interfere with the ideas behind fast synchronisation 

and self-organisation. 

 

2.5 SECOAS project 

SECOAS is a research project, funded by UK department of Trade and Industry, 

which is aiming to trial a sensor network monitoring offshore sedimentation processes 

at Scroby Sands offshore wind farm.  SECOAS project officially started in summer 

2003, with BTexact Technologies, University College London department of 

Electronic and Electrical Engineering being responsible for the application 

development and system architecture. The full trial of the systems using approx 50 

nodes is going to be deployed in summer 2005.  The trial is designed to demonstrate 

technological solutions to problems in communication and maintenance in a difficult 

environment, and also to prove the science benefits of the high spatial resolution 

measurements the network enables.  Immediate applications are foreseen in coastal 

defence and water management. 

The wind farm development located on the Scroby Sands sand bank provides the 

key requirements capture for the SN development. The location of wind turbines on 

sand banks can produce highly complex turbulent flows both locally, producing sand 

shift and scouring of the turbine bases; and on a wider scale having impacts on along-

shore sand banks and sea barriers. Measuring the ocean in this environment is 
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currently expensive. Typical “Landers” will cost £100-200K to build including 

sensors, acoustic releases and etc and have high deployment and retrieval costs (as the 

lander must be precision located). A single lander can only measure the environment 

at a single point; it is vulnerable to destruction by storms, burial by moving sand 

waves and accidents from trawlers – as such it is a ‘one shot’ proposal. In science 

terms, the key problem is that the current technologies do not give good coverage in 

either time or space. For most of each deployment little happens so power and data 

storage is wasted; operational cycles are always compromises between the need for 

high resolution measurements during the active periods (usually storms) and the 

uncertainties in the frequency, timing and severity of the active periods. Typically, 

most monitoring systems undergo fixed sleep-sample duty cycles which are good 

enough for monitoring regular features (e.g. tides) but cannot reactively monitor 

transit effects. Turbulence is far from regular through space and there is clear need for 

high special sampling to measure features such as sand: drift, scouring and build up.  

The initial main goals of the SECOAS project are: 

 

• The sum of the system’s physical maintenance, training, node unit and 

deployment costs must be competitive with current environmental monitoring 

practices. 

• The network must operate in hazardous or remote environmental conditions. 

• The project must demonstrate the wide applicability of the techniques and 

technologies used. 

• The project must ensure the demonstration of autonomous collegiate 

management in a wireless sensor network [ 19]. 



Sensor networks and their applications 

kOS Page: 22 Hamed Haddadi 

Figure 7 shows the Function flow block diagram of the SECOAS operation. 

 
Figure 7: Function flow block diagram of SECOAS system [ 19] 

 

The approach developed in SECOAS is to develop a SN platform consisting of a 

large number (30-50) of low cost (<£1000) nodes. Each node has basic functionality; 

a small µ-processor, low rate communications and sensing capabilities. Sensing 

capabilities will focus on features such as, optical backscatter –a measure of sediment 

load in the water – pressure, and temperature. In addition to the general sensor nodes, 

there will be a few master packages which can measure other parameters (e.g. surface 

pressure) and for communications with the science base-stations. For deployment the 

nodes could be scattered from a boat, if they are capable of determining their own 

location. Key amongst the technical requirements is the need for the nodes to be able 

to communicate between them selves on a nearest neighbour basis. This can be 

achieved using surface-floating tethered buoys supporting low cost, low power radio 

communications such as IEEE802.15.4, operating in the IMS spectrum with low data 

rates (250 kbps) and high node densities (~250) and low power demands (e.g. 30µW 

for a 1000/1 sleep/transmit cycle). For more general applications sonar 

communications are a viable alternative. This approach brings its own set of 

functional requirements. The nodes must be able to configure them selves for 

monitoring frequency in space and time, to be able to condense data and 

communication it back to the base station, to be able to substitute for each other in 

case of failure, and be able to locate them selves. The nodes must respond to local 

changes in the environment (both the monitored environment and each other) as 

autonomously as possible. Thus there is a need for a general, localised control system 
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with the whole system manageable by the scientist / operator. It is not possible for the 

operator to control the each node individually so the system must be manageable at a 

high level. More information about the general directions of the SECOAS project can 

be found in  [I]. 

One of the main requirements of the SECOAS project is a low-power operation. 

Idle modes in the MCU and low duty cycles will help achieving this. Work on the 

system architecture and the operating system of the SECOAS project started with 

development of applications in simulation environment, and test are currently being 

carried out on a PIC18F452 MCU from Microchip. The most important specifications 

of this chip are: 

• 32 Kbytes flash program memory, allowing up to 16384 single word 

instructions to be executed. 

• 256 Bytes EEPROM memory with 40 year data retention 

• C compiler optimized architecture/instruction set 

• Linear program memory addressing to 32 Kbytes 

• Linear data memory addressing to 1.5 Kbytes 

• Up to 10 Millions of Instructions Per second (MIPS) operation 

• 16-bit wide instructions, 8-bit wide data path 

• Priority levels for interrupts 

• 8 x 8 Single Cycle Hardware Multiplier 

• Three external interrupt pins 

• Three timers with interrupt capability and counting during sleep execution  

• Addressable USART module, Supports RS-485 and RS-232 

• Inter-Integrated Circuit (I2C)™ Master and Slave mode 

• Watchdog Timer (WDT) with its own On-Chip RC 

• Power saving SLEEP mode 

• Low power consumption: 

- < 1.6 mA typical @ 5V, 4 MHz 

- 25 µA typical @ 3V, 32 kHz 

- < 0.2 µA typical standby current 

• Compatible 10-bit Analogue-to-Digital Converter module (A/D) with: 

- Fast sampling rate 

- Conversion available during SLEEP [ 18] 
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 The PIC MCU resides in the application board which has other components, 

such as a crystal, external EEPROM, RS232 interface and regulators. In the context of 

this report, this collection is called the kOS board and is considered to be designed on 

a single Printed Circuit Board which is powered by an external battery. 

 

  
Figure 8: System Configuration of Sensor Node [ 1] 

 

Figure 8 shows the system configuration of a SECOAS sensor node. The kOS 

board, which includes the MCU and any external EEPROM memory, resides in a 

floating buoy together with a radio board. This buoy is connected to a submerged 

sensor module which logs data locally. The sensor module occasionally passes 

important data to the kOS board which stores it and forwards it to the base-station. 

Various applications use this data and communicate with themselves across the 

network. User polices and application data are forwarded by the radio module to the 

kOS board. Information may be passed to the sensor module in the case of data re-

transmission requests [ 1]. 

There are two types of nodes in SECOAS architecture: Sensor Nodes and Base-

station Nodes. Figure 9 displays the state machine for a sensor node operation. Baste-

Station nodes are the link between the sensor network and the shore-based node. Base 

station initiates synchronization throughout the network by transmitting “beacons” 

and collects the data from sensor nodes. Policy distribution and software upgrades are 
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also done via base station nodes. This project is mainly concerned with the operation 

of sensor nodes, as they are the heart of the system, collecting data and distributing 

tasks and applications. Figure 9 displays the state machine for a sensor node 

operation. 

 

 
 

Figure 9: State machine of node operation 
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3. Operating system in sensor networks  
Operating system is defined as a large and complicated computer program that 

kicks in from the moment a computer, or in smaller devices a microcontroller, is 

powered and booted up. Commercial operating systems usually allow simultaneous 

execution of many big complicated computer programs peacefully on one physical 

computer. The operating system is also responsible for hiding the details of the 

computer hardware from the application programmers. This last characteristic is an 

extremely important one for comparison of computer operating systems with sensor 

network operating systems. This chapter brings a brief introduction to a few of the 

operating systems used for sensor networks and discusses the reasons that make these 

operating systems unsuitable for objectives of the SECOAS project. 

 

3.1 Operating system requirements for sensor networks 

Operating systems in wireless sensor communication increasingly must satisfy a 

tight set of constraints, such as power and real time performance, on heterogeneous 

software and hardware architectures. In this domain, it is well understood that 

traditional general-purpose operating systems are not efficient or in many cases not 

sufficient for these types of complex real time, power-critical domain specific systems 

implemented on advanced heterogeneous architectures. More efficient solutions are 

obtained with operating systems that are developed to exploit the reactive event-

driven nature of the domain and have built-in aggressive power management. 

General-purpose operating systems do not target low power applications, they have no 

built-in energy management mechanisms [ 20]. 

For many sensor network nodes the identification and implementation of 

appropriate operating system primitives is still a research issue. In many current 

projects, applications are executing on the bare hardware without a separate operating 

system component. In sensor networks, the operating system must have a few specific 

properties which are listed here: 

• Compactness: The operating system is typically running on an extremely 

small microprocessor with limited on-board memory, so it must be small. 

• Simplicity: Even though the operating system is small, it should still allow 

simple implementation of multi-tasking and memory management. 
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• Robustness: The operating system running on the nodes must be robust 

and facilitate the safe execution of reliable distributed applications. 

• Reliability: The nodes can not be manually reset, so the operating system 

must use all the available facilities, such as the Watchdog Timer (WDT), 

to enable reliable operation and self-maintenance. 

• Remote operation: The operating system must be remotely re-

programmable to enable remote changes in network operation. 

• Power awareness: It is extremely important to make efficient use of limited 

battery resources available to the sensor nodes and it is the job of the 

operating system to keep the operation mode to minimum time. 

 

3.2 The TinyOS architecture 

TinyOS was initially developed by the U.C. Berkeley EE/CS Department [ 21]. It is 

the operating system of the motes used in the Smart Dust project. TinyOS specifically 

targets event-driven communication systems. Because TinyOS is not designed to 

support a broad range of general applications, it can cut down on expensive OS 

services such as dynamic memory allocation, virtual memory, etc. In addition, 

unnecessary performance degrading polling is eliminated and context switching is 

minimized and very efficiently implemented. On some implementations, special 

hardware accelerators are used to help the core pieces of TinyOS run more efficiently. 

For example, the accelerators allowed data encryption to be performed by the 

hardware, which is thousands of times more efficient than performing the same 

function in software. TinyOS provides components such as: 

• Analogue to digital conversion 

• Cryptography 

• Data logging 

• File system 

• I2C communication 

• LED control 

• Memory allocation 

• Random number generation 

• Routing 
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• Sensor board input 

• Serial communication (wired and wireless) 

• Timers 

• Watchdog timer [ 26] 

 

TinyOS possess certain qualities that are very attractive for low power 

heterogeneous systems. Its event-driven asynchronous characteristics can naturally 

support the interactions and communications between modules of vastly different 

behaviour and processing speeds in a heterogeneous system. Its simplicity incurs 

minimal overheads and it has some support for concurrency.  

TinyOS has its own limitations and is insufficient to fulfil the ambitious role 

demanded by low power heterogeneous systems. First of all, TinyOS primitives are 

microprocessor centric, while advanced system architectures consist of heterogeneous 

modules of custom logic, programmable logic, memories, Digital Signal Processors 

(DSP), embedded processors, and other optimized domain specific modules. 

Furthermore, TinyOS only supports rudimentary power management scheme [ 20]. The 

logical next step is to extend TinyOS and establish it as the global management 

framework that incorporates the heterogeneous architecture modules in the system, as 

well as devise sophisticated power management mechanisms. More detailed analysis 

of the TinyOS advantages and disadvantages is followed in the next section. 

Development of TinyOS is continued at UC Berkley laboratories. 

 

3.3 EYES Operating system architecture 

The main processor used in the EYES project is MSP430F149, produced by Texas 

Instruments. It is a 16-bit processor and it has 60 Kbytes of program memory and 2 

Kbytes of data memory. It also has several power saving modes. A node is also 

equipped with an auxiliary serial EEPROM memory of 8 Megabits (used for 

application and data storage). Effort is made to enable limited power consumption by 

use of interrupts for data transmission and receive tasks. A task scheduler maintains 

the execution of tasks. It can be implemented as a simple FIFO schema or a more 

advanced one allowing priority and deadline driven executions for real-time 

applications. The interrupts are seen as tasks that are scheduled to be executed. 
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EYES operating system has to facilities: resource management and a remote 

procedure call mechanism. Resource management deals with the operations of 

resource request, declaration and allocation. Resource requests appear in the case that 

a node has to perform a specific computation but does not have enough memory, 

energy, or even speed. A query will be submitted to the system (its neighbours) and 

the ones that can do the computation will respond (resource declaration and allocation 

occurs). The remote procedure call will be the mechanism that allows the requester to 

perform the needed computation using other’s node resources. 

The use of these levels in the EYES operating systems dictates the use of 

Application Program interfaces (API). There are two API levels, one specifically 

designed to deal with operating system tasks. The other API level sits between the 

application and the Distributed System Layer. The application can get the results of 

the sensor network (the processed data) or can ask the network to adapt and perform a 

specific function. The network structure and algorithms used are transparent for the 

end-user [ 22]. 

  

3.4 Operating system requirements of SECOAS project 

 

SECOAS project requirements are for a slowly-changing topology, gossip-based 

communications transport over a minimal communications stack and the interchange-

ability of node roles. Hence there is little need for network addressing or routing. The 

EYES project, and its associated EYES operating system is much closer to our goals 

in that it seeks to support a self-organising sensor network of distributed applications. 

The EYES operating system is a general-purpose operating system for wireless sensor 

networks and it also has the advantage of having APIs to enable its operation and 

interaction with other applications. However its complex structure makes it unsuitable 

for the SECOAS project which has specific requirements on simplicity, efficiency and 

low overhead for data communications to be used in environmental monitoring 

applications. 

There are various reasons why TinyOS is unsuitable for SECOAS requirements. 

Firstly, TinyOS is designed to support concurrency-intensive operations in order that 

applications and radio-slave devices (that have no buffering and strict hard real-time 

constraints) be multithreaded to give acceptable levels of service. This differs from 
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the SECOAS approach of single task execution: SECOAS applications have more 

relaxed latency requirements and can be pre-empted by higher-priority tasks. These 

high priority tasks can be changed by adopting new network topologies and applying 

different policies. Radio module intended to be deployed in SECOAS (and other 

external hardware devices) has its own buffering and therefore also more relaxed 

timing constraints. Secondly, TinyOS was designed to be as minimal as possible in 

order to execute on extremely limited devices; the stated goal of supporting cubic 

millimetre scale devices with minimal processing (the emphasis is on forwarding to 

an intelligent node) is vastly different from SECOAS goal which is to execute a small, 

simple OS on cheap wallet-sized devices. Emphasis of SECOAS is on the support of 

distributed, networked applications rather than hardware. The data processing 

algorithms, such as compression of collected data in case of high network utilisation, 

or lots of collisions leading to data loss, can be done on the sensor nodes to avoid 

passing raw, unnecessary data on the energy-intensive communication channel.  

There are several embedded operating systems that were considered as candidates 

for the SECOAS project. All these operating systems fail to meet SECOAS 

requirements because of one or more of the following:  

(i) They are specific to various embedded hardware functions suitable 

only for particular applications and do not easily allow application 

extensions or have only static task allocations. 

(ii) They do not allow easy portability between different platforms and 

MCU hardware, due to use of application-specific languages or APIs. 

(iii) They use multitasking techniques, whereas SECOAS requires a simple 

single tasking execution model. 

(iv) Their memory footprint is excessive for our MCU-based system. 

(v) They execute only on powerful Pentiums or ARM processors. 
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4. Architecture and development of kOS  
The development of kOS started by the author in summer 2003 in order to explore 

the feasibility of design of a unique operating system for the SECOAS project. The 

first version of kOS, kOS V0.1 Alpha, was written in a mix of assembly language and 

C, using the MPLAB® Integrated Development Environment (IDE), which is the 

simulator and programmer software for PIC microcontroller range. First version had a 

footprint of only 588 bytes, yet it included various functional blocks, task modules 

and a simple task dispatcher working with timers. Use of SLEEP and WDT facility, 

EEPROM read/write, timers and task scheduling was experimented primarily in this 

version.. More information about this version is available in  [VI].  

Development of kOS has continued in the department of Electronics Engineering, 

UCL and the current version is V0.13 Alpha. This section is an abstract summary of 

the guide to the kOS Operating System. For more detailed architectural reference 

please refer to 82]. 

 

4.1 kOS structure 

The kOS is divided into objects and methods. Objects and methods are classified 

as either system or application—system methods are used to apply control to multiple 

objects, whilst application methods are specific to individual applications. Task 

execution is performed by specifying objects, methods and execution times. Figure 10 

Figure 10 shows the hierarchy of these kOS functional components. As can be seen, 

the main routine has various objects available to execute, while these objects share 

various methods. The methods share library routines. 

 

 



Architecture and development of kOS 

kOS Page: 32 Hamed Haddadi 

 
 

Figure 10: kOS Functional Components Hierarchy 

 

4.1.1 kOS objects 

Table 1 shows the full list of kOS objects. 

Object # Object description 

0 System – kOS 

1 System – Radio interface 

2 System – Sensor interface 

3 System – Messaging 

4 System – User interface 

5 System – Scheduler 

6-98 System – Reserved for future system objects 

99 
System – All application objects (used to call all objects with a 

common method 

100 System – Reserved for future system object 

101 Application – Adaptive sampling 

102 Application – Quorum sensing 

103 Application – Auto-location 

104 Application – Control-theoretic adaptive sensing 

105 Application – Re-programming 

106 Application – Data processing 

107 
Application – Base-station (data processing and re-transmission 

requests) 
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108-255 Reserved for future application objects 

Table 1: kOS Objects 

 

More information on individual kOS can be found in [ 1]. However the messaging 

object is of great importance in the context of this project and implementation of 

algorithms. This object implements the SECOAS Application Messaging (SAM) and 

SECOAS Data Messaging (SAD) protocols. SAM is used between applications, 

whilst SAD is used between applications and the sensor module. The Messaging 

object is scheduled periodically, and is scheduled after any radio or sensor interface 

bytes have been received. When new data is found, the Messaging object schedules a 

new data arrival method for the destination object. 

Note, however, that applications may also check for new data themselves when 

they finish execution, by invoking the Messaging object’s check for new object data 

method. If new data is available, the Messaging object will directly schedule the 

application’s new data read method. This will be a rare occurrence, as the periodically 

scheduled method described in the paragraph above will catch any data arriving over 

the radio interface. However, this second approach allows objects to share data over 

SAM or SAD if that is required. 

When an application is informed of new data, it is the application’s responsibility 

to read the new data and incorporate the data into its own buffer, as the packet will be 

deleted at the end of each cycle. 

 

SECOAS Application Messaging (SAM) Protocol 

SAM is used by objects for intra- and inter-node communication. The majority of 

SAM messages contain application information, such as the sharing of parameters or 

data. However, any object may use SAM to pass data or control information over the 

radio interface to neighboring nodes or to applications residing on the same node. 

Applications may message other applications on the same node by simple writing a 

SAM packet to the receive buffer, with the correct destination object ID specified. 

The specification for the SAM protocol is shown in Table 2  [note that header and 

footer bytes are not actually transmitted or received over radio], these are removed by 

the radio interface before transmission in order to keep the packets short, to satisfy the 

radio hardware requirement of a 16-byte maximum packet size. From the table, it can 

be seen the minimum (radio) overhead for a packet is 6 bytes. 
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Field label Field description 

Number of 

bytes used 

(byte pos) 

Header Hex 3C3C. In ASCII this reads “<<” 2 (+0,+1) 

Sender node 

ID 

Used for network or application 

addressing. See Table 3 
1 (+2) 

Destination 

node ID 

Used for network or application 

addressing. See Table 3 
1 (+3) 

Sender object 

ID 
The ID matches the object number 1 (+4) 

Destination 

object ID 

This will usually be the same as the 

sender ID object 
1 (+5) 

Length of data 

field 
in bytes 1 (+6) 

Data payload 
This payload is defined by application 

writers 
X 

Checksum  

The checksum data is taken from the 

sender node ID field to the end of the 

data payload field 

1 (+7+X) 

Footer Hex 3E3E. In ASCII this reads “>>” 
2 

(+8+X,+9+X)

Table 2: SAM packet fields, Byte positions are shown in parentheses. 

 

The SAM packetiser object examines the checksum, header and footer before 

informing any applications that new data has arrived. If any of these tests fail, the data 

is deleted and no further action is taken. 

The mechanism for forwarding of packets has not been fully defined yet—it may 

be done at the networking layer, or done at the application layer. A 1-byte address will 

be used for this, as shown in Table 3. 

 

Address Summary 

1-200 Reserved for developer-assigned node IDs 

201 Route packet upstream 1 node-node hop distance 
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202 Route packet downstream 1 node-node hop distance 

203 

Route packet upstream the maximum number of node-node 

hops, used to get user data (possibly from a sensor module) to 

the base-station 

204 

Route packet downstream the maximum number of node-

node hops (used by the base-station to flood packets to try 

and reach a specific node destination in the absence of 

network-level packet routine, or to flood multicasts, possible 

for application usage) 

Table 3: Network Route Addresses 

 

SECOAS Application Data (SAD) Protocol 

As with SAM packets, the SAD header and footer bytes are not actually sent over 

radio. The specification for the SAD protocol is shown in Table 4. 

Field 

label 
Field description 

Number of 

bytes used 

(byte pos) 

Header Hex 0x5B5B. In ASCII this reads “[[” 2 (+0,+1) 

Packet 

type 

invalid = 0, P-Value = 1, Data = 2, Error 

= 3, Acknowledgement (ACK) = 4, Data 

request = 5, 6-15 reserved 

1 (+2) 

Data field 

This holds either a 5-byte P-Value 

payload, a 7-byte Data record empty for 

an Error or ACK packet, or contains a 4-

byte Request  

5 

(+3,+7/+11/+

5//) 

Checksum  

Checksum data taken on the (i) packet 

type/data type, (ii) sequence number and 

(iii) data fields 

1 

Footer Hex 0x5D5D. In ASCII this reads “]]” 2 

Table 4: SAD packet fields 

The sensor package sends data only when an Ack packet is received from kOS for 

the previous transmission (unless it is the first transmission). 
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4.1.2 kOS methods 

The current list of methods is shown in Table 5: kOS Methods. The behaviour of 

each is described in [ 1].  

 

Method # Method description 

0 System – Default execution of object 

1 System – Reset (note resetting kOS object resets PIC chip and board) 

2 System – Error reporting 

3 System – Status reporting 

4 System – Initialise 

5 System – Test the object 

6 System – New data arrived for object 

7 System – Enable continuous testing mode 

8 System – Disable continuous testing mode 

8-99 Reserved for future shared system methods 

102 Radio interface – Clean buffers 

113 Sensor interface – Clean buffers 

120 Messaging – Check for new data in radio receive buffer 

121 Messaging – Check for new data in radio transmit buffer 

122 Messaging – Check for new data in sensor receive buffer 

123 Messaging – Check for new data in sensor transmit buffer 

140 kOS – end-cycle house-keeping 

141-255 Reserved for future application methods 

Table 5: kOS Methods 

 

4.1.3 Node memory organisation 

The microcontroller unit (MCU), the Microchip PIC 18F452, has three main types 

of memory; FLASH EPROM—a non-volatile memory for program installation; 

RAM—a volatile memory used for short-term data; and EEPROM—a non-volatile 

memory used for long-term storage of data. The 18F452 has 32k FLASH, 1.5k RAM 

and 200 bytes of EEPROM on-board. The kOS object code, object methods and 

constants are stored in the main program memory. In the RAM the variables needed by 
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 the kOS, including the high- and low-priority task queues, sensor data storage, 

and radio receive and transmit data buffers are stored. Data required for long-term 

storage, including a history of boot-up failures are stored in the PIC data store. Sensor 

data from the sensor module and local data from the Microchip development board 

(PICDEM2) on-board temperature sensor, and possibly data copied as it passes 

through the radio upstream to the base-station are stored in the local sensor data store. 

An outline of the usage of the four memory areas is shown in Figure 11. 

 

 
Figure 11: Outline of kOS Memory Organisation 

 

The exact usage of each memory area (except program memory) together with 

item descriptions is shown in Table 6, Table 7 and Table 8. 

 

Item Addresses used (Hex) Bytes used 

Sensor transmit buffer 200-279 128 

Sensor receive buffer 280-2FF 128 

Radio transmit buffer 300-379 128 

Radio receive buffer 380-3FF 128 

Base-station buffer 400-4FF 256 

Table 6: RAM (Volatile) Memory Organisation 
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Item 
Addresses used 

(Hex) 

Bytes 

used 

Number of consecutive resets due to WDT time-

out 
0 

1 

Table 7: PIC EEPROM (Non-volatile) Memory Organisation 

 

Item Addresses used (Hex) Bytes used 

Local sensor data buffer 0000-03E7 1000 

Temporally-compressed data buffer 03E8-07CF 1000 

Spatially-compressed data buffer 07D0-0BB7 1000 

Table 8: PICDEM2 EEPROM (Non-volatile) Memory Organisation 

 

4.2 kOS operation 

 

The kOS executes on both standard and base-station nodes—base-station features 

are simple enabled or disabled at compile-time for a standard sensor node. The kOS is 

designed to support a sensing interface and a radio interface, while allowing remote 

re-programmability and control, and data acquisition.  

The basic operation of the kOS involves a short-wake/long-sleep duty cycle, and 

scheduled executions of high- and low-priority tasks. Most important advantages of 

kOS are in the fact that it is a simple, interrupt-driven operating system, and allows 

only 1 level of task preemption. This is adequate, as all low-priority kOS applications 

do not have strict latency requirements and save their own contexts in case of 

interruption. The kOS relies on a high degree of autonomy with its applications. 

Generally, applications will schedule themselves for their next execution and manage 

themselves. The radio interface is special as it receives a high-priority execution in 

order to satisfy the low-latency requirements of the radio module. Other applications 

execute at a lower priority and may be preempted by radio interface functions. 

The basic operation of the kOS revolves around the sleep/activity/sleep cycle. The 

device is woken by a high or low priority interrupt. These interrupts cause the high or 

low priority scheduling routines to execute. The appropriate task is serviced, and then 
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the service routine returns the device to sleep. If a second task was due during the 

execution, the second task is executed immediately on going to sleep, even though its 

own execution time has passed. This basic operation is shown in a simple state 

diagram in Figure 12. 

 
 

Figure 12: State Transitions in kOS Operation 

 

Figure 13 shows how data flows between the radio and sensor interfaces, kOS 

buffers and the kOS applications. The received radio data is either sent straight to the 

sensor transmit buffer, in the case of a SAD packet, or sent to an application, 

depending on the destination object ID specified. Any data stored in the sensor 

receive buffer is sent straight to the radio transmit buffer. Applications may send data 

to either transmit buffer, and may also write packets to the radio receive buffer, to 

enable communication between applications. Data stored in either of the transmit 

buffers is sent to the respective module. 
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Figure 13: Data flow between modules, buffers and applications 

 

Communication between the kOS board and the radio buffer, and between the 

actual sensors and the kOS board takes place using the RS232 interface protocol. The 

RS232 interface operates at 9600 baud with 8 data bits, 1 stop bits, 1 parity bit and 

Clear-To-Send (CTS) hardware flow control. The kOS board multiplexes its RS232 

connection between the radio and sensor boards regularly, and waits for arriving bytes 

to fill the USART buffer. When this occurs, the USART causes a high-priority 

interrupt, and the byte is read into the appropriate buffer. The CTS pin is used to 

signal to the appropriate module that it is free to transmit. It is expected that both 

modules use their CTS pins in the much the same way to control the kOS 

transmissions. Figure 14 shows the configuration of the RS232 interface between the 

kOS and the two modules. As shown, the PIC uses a line driver to convert to RS232 

levels, and then uses a Control Line (CTL) to multiplex and de-multiplex the RS232 

signals between the two modules. 
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Figure 14: RS232 Hardware Interface 

 

This chapter briefly described the characteristics of kOS V0.18 Alpha. More 

information is available in [ 1]. In the next chapter, efficiency issues within the kOS 

are discusses. Methods of achieving longer operation using batteries and efficient use 

of the SLEEP facility of the PIC MCU and higher utilisation of the communication 

links will be investigated. 
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5. Analysis of the kOS communication efficiency  
Power consumption is an important factor in design and use of sensor networks. 

Sensor devices may have to be deployed in remote and dangerous areas and be 

capable of collecting data and communicating with other sensors and the base-station 

for weeks or even months, without the possibility of changing the batteries. Another 

issue which arises here is the fact that the sensor nodes are usually designed to be 

embedded within other modules, so it is not possible to connect them to power lines 

or attach large batteries to them.  The nodes can be powered by use of a battery or by 

energy harvesting from the environment. Power is a scarce resource in a sensor 

network node and must be consumed wisely. 

Energy harvesting techniques, using vibration, wind energy and solar batteries are 

a way of creating additional energy on board. However the gathered energy may be 

enough for the microcontrollers to extend their life, but it will certainly not be enough 

for radio communications between the devices. This section aims to address some of 

the important efficiency factors which are investigated using the kOS as an example 

of a light-weight operating system in a sensor network environment. The first field 

trial of the SECOAS project is designed around the Microchip PICDEM2 Plus board. 

Figure 15 shows the Microchip PICDEM2 Plus board. 

 

 
Figure 15: Microchip PICDEM2 Plus evaluation board (Figure courtesy of 

Microchip® Inc [ 24]) 
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The Main features of the board are: 

1: 18, 28 and 40-pin DIP sockets.  

2: On-board +5V regulator for direct input from 9V, 100 mA AC/DC wall adapter 

or 9V battery, or hooks for a +5V, 100 mA regulated DC supply. 

3: RS-232 socket and associated hardware for direct connection to an RS-232 

interface. 

4: In-Circuit Debugger (ICD) connector. 

5: 5 KΩ pot for devices with analogue inputs. 

6: Three push button switches for external stimulus and Reset. 

7: Green power-on indicator LED. 

8: Four red LEDs connected to PORTB. 

9: Jumper J6 to disconnect LEDs from PORTB. 

10: 4 MHz canned crystal oscillator. 

11: Unpopulated holes provided for crystal connection. 

12: 32768 Hz crystal for Timer1 clock operation. 

13: Jumper J7 to disconnect on-board RC oscillator (approximately 2 MHz). 

14: 32K x 8 Serial EEPROM. 

15: LCD display. 

16: Piezo buzzer. 

17: Prototype area for user hardware. 

18: Microchip TC74 thermal sensor [83]. 

 

In the context of this chapter the communication and power saving techniques are 

investigated using the PICDEM2 Plus board in order to demonstrate the energy 

savings which are achieved through the course of this project. 

 

5.1 Communication between the kOS and the sensors 

In the SECOAS project, the need for reliable and powerful communication in the 

ocean environment dictates that the radio modules are powered by a battery source 

located in a floating buoy. The kOS board resides in this floating buoy and it 

communicates to the sensor node at the bottom layer of the ocean, via an RS232 

USART interface of cable length of around 30 metres. There are 5 data lines present 

in the RS232 interface: 
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• Receive data 

• Transmit data 

• Ready-to-send 

• Clear-to-send 

• Ground 

 

This will indicate the use of a 6 core twisted pair, shielded, waterproof copper 

cable. The shielding is required as any long wire will act as an antenna and pick up 

interference, Even though these interferences may be minimal at the bottom of the 

ocean and with data rates  as low as 9.6 kbps, the temperature difference between the 

wire core and the water temperature can result in development of copper oxide. 

Shielding the wire will delay this process and stop harmful interference.  

An important problem in the communication between the sensors and the kOS 

board is the resistance of the wire. The RS232 is operating at voltages of -8V to 8V. 

The resistance of the copper wire can result in a voltage drop, as a result of which the 

power consumption will be increased. The normal Un-shielded twisted Pair (UTP) 

cables have an impedance of around 100-120 Ohms/km according to manufacturer’s 

and experiments conducted by the author. The cost of cables increase greatly as they 

are shielded and the core impedance is decreased and can be as high as £10 per metre 

for industry standard versions (e.g. 0.5 mm2 gate copper for low temperature, with 

resistance of around 30 Ω/km) seen in public component catalogues such as Farnell 

and RS. 

 

5.2 RS232 cable experiment 

An experiment is designed in order to analyse the possible effects of using the 

UART RS232 standard as the communication interface. In this experiment a 30 metre, 

6-core UTP cable is used to provide the 5 wires required for the RS232 

communications, and the joint are soldered to the appropriate pins of the male and 

female (DB9) connectors. For the purpose of the experiment, the serial port of a PC is 

connected to the kOS board by the RS232 cable. The PC acts as a sensor module, 

receiving and sending data to the kOS board using the serial port and the RealTerm 

terminal emulator freeware software. The data is received and sent successfully, 
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however the current consumption on the cable is around 0.2 mA, which is 

considerably high. Figure 16 shows the equipment set-up for the RS232 experiment. 

 

 
Figure 16: Equipment set-up for the RS232 experiment 

 

The Transmit Data (TRD) and Receive Data (RXD) PIC18F452 has its UART 

module outputs on pins 25 and 26. RTS and CTS are also hardwired to pins 2 and 3. 

The MAX232A acts as the RS232 driver. The RS232 signal has a positive 8V voltage 

for the HIGH state and 0V for the LOW state. Even though in the RS232 standard the 

LOW state is required to be at -8V, use of 0V does not cause any problems for the low 

data rates used on the kOS board. However the main issue with the MAX232A is its 

constant current consumption of around 8 mA, which is a major strain on the current 

consumption of the board as a whole. Since neither the radio nor the sensors are not 

transmitting data, or listening out for incoming data apart form their dedicated 

timeslots, the operation of the RS232 driver is not required most of the time and a 

method has to be devised to shut down the device while at idle state. Figure 17 brings 

an overview graph of the practical current measurements, consumed by the PIC and 

the MAX232A for transmitting a data message. The reading on all of the graphs have 
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been taken at discrete times and not on a continuous basis, as the equipment to enable 

such readings was not available to the author, hence the data points are not connected. 
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Figure 17: Current consumption of the PIC + RS232 driver 

 

The most convenient way of overcoming the high-current problem is to use a 

more efficient driver chip for the communication between the boards. An alternative 

which has been devised is to use a more sophisticated RS232 driver circuitry which 

enables a shut-down mode when there is no data being sent or received. The author’s 

suggested chip is the Maxim MAX242 [ 23]. The MAX242 driver has three operating 

modes: active, low power shut-down mode and it is one of the few which has the 

option of an active receiver whilst in shut-down mode. The current consumption of 

MAX242 is 0.1 µA at 25°C in the shut-down mode, which is virtually 90% of the time 

that the radio or sensor modules are on. When active, the MAX242 only draws 4 mA 

at +5V, which is still 50% less then the MAX232A IC which is used on the 

PICDEM2 Plus board. This will also lead to a lower current consumption by the 

resistors at the RS232 interface, which are currently 4.7 kΩ resistors, so each of them 

will consume 1.7 mA at 8V RS232 voltage. Figure 18 displays the theoretical 

achievement of this method. 
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Current drawn by PIC & RS232 module when communicating with 
sensors via RS232, using Shut-Down mode on RS232
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Figure 18: Current consumption of the PIC + RS232 using shut-down mode 

 

The use of shut-down modes on the driver further complicates the PCB design and 

system architecture but due to the fact that there is already a CTS and RTS hardware 

flow control system implemented it is more feasible to use these as the controller for 

the RS232 driver. Figure 19 displays a possible method for controlling the power on 

the circuit. Note that this is only possible in the transmit cycles, as in receive cycles 

the MCU has no control over the timing of the data arrivals and the path should be 

already set-up by the RS232 driver chip. 
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Figure 19: Modified RS232 controller circuit 

 

5.3 Practical energy savings on the kOS board 

For the 1st field trials of the SECOAS project, Microchip PICDEM2 Plus boards 

will be used as the kOS board. These boards have certain features that can be 

eliminated in order to minimise the on-board current consumption, which normally 

exceeds 40 mA. The most important items that can be immediately made redundant 

are the debug LEDs and the LCD display. LEDs and the LCD consume around 20 mA 

when powered. The on-chip buzzer and temperature sensor can also be removed, even 

though the temperature sensor, Microchip’s TC74, can be used as an emergency 

temperature reader in case of failure of the main temperature sensor at the bottom of 

the ocean.  

Another improvement which can lead to lower power consumption is the use of 

the on-chip EEPROM as opposed to the external EEPROM module provided on the 

kOS board. The EEPROM on the kOS board is the Microchip 24LC256. This 

EEPROM module operates at 5.5V, with a maximum draw current of 3 mA, a 

maximum read current of 400 µA, and a standby current of 0.1 µA which is 

equivalent to the PIC18F452 sleep mode current consumption. The 24LC256 offers 

32 Kbytes of memory with data retention of 40 years, while the on-chip EEPROM of 

the PIC18F452 offers only 256 bytes. As most of the applications are continuously 
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sending and receiving data with periods of orders of seconds, it is more feasible to use 

the on-chip EEPROM for essential information and perhaps back-ups of data means 

that have not been sent due to storm or radio channel interference. 

Since the kOS board consumes only around 10 mA while the MCU is working, it 

is feasible for it to get power from the radio module’s batteries which are 6V, 12 Ah 

NiCad batteries. However another issue that arises here is that the PICDEM2 Plus on-

board regulator, the LM7805, operates as voltages above 7V with a quiescent current 

charge of around 5 mA to 1A at 5V output. This range is far too large for the 

requirements of the kOS board. An alternative regulator which is much more suitable 

to the applications is the LM2936. It outputs up to 50 mA and has a low quiescent 

current of 0.2 mA. The output is 5V as long as the input is at least 5.5V and it also has 

a power shutdown mode which is extremely useful if all the parts, apart from the PIC 

MCU, are moved to a separate board, so that they can be shut down when not required 

by the PIC. However turning the regulator and the RS232 driver on and off can only 

be beneficial if the frequency of this is less than a second, as the discharge capacitors 

take a fraction of a second to get fully charged and stabilise. 

 

5.4 Alternative communication techniques 

The deployment location of the sensor nodes makes them susceptible to natural 

phenomena such as ocean storms, damage by the local fish species and interference 

by various wireless devices present on the telecommunication devices used by the 

fishermen and ships. The fact that sensors board is located at the bottom of the ocean 

makes it necessary for them to transmit the data to the kOS board on the sea level. 

However there are alternative methods that can be used for the transmission of data. A 

normal RS232 connection over cable is an extremely expensive way of sending the 

sensor data across as the shielded, waterproof and low resistance 5-core cables are 

costly. 

An alternative scheme is to use a simple optical fibre and LED system. Cheap 

plastic optical fibres are not immune to Electro-Magnetic Interference (EMI) and 

Radio Frequency Interference (RFI), water will not harm them and they can be used in 

places where voltage isolation and insulation is an issue. Typical operating 

temperatures are 0-70°C. The 600 nm LED transmitters and receivers can cover 

distances of up to 120 metres with data rates of up to 40 kBaud using plastic optical 
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fibre, operating in the low current mode. The average output collector current of the 

receiver is 5 mA and the receivers and transmitters (Transmitter: HFBR1524, 

Receiver: HFBR1524) are readily available from manufacturers, with a complete kit 

costing less than £20 [ 24]. 

Experimental work has also been carried out in the EE department to investigate 

the use of ultra-sonic links for the data transmission under the water. 

In receive mode the radio consumes around 30 mA of current and in receive mode 

it draws around 10 mA current. In order to minimise the radio communication, the use 

of ideas behind some audio and video compression technique such as MPEG is 

favourable. Each sensor data reading has a maximum of 10 bytes that it can send to 

the kOS board as a SAD packet, which is then wrapped in a SAM packet and sent 

over the radio. As there is a field to indicate the number of data bytes, there is room 

for decreasing the actual data bytes and transmitting smaller packets. This is done by 

comparing every sensor data reading in a SAD packet, and comparing it to the 

previous value, and only sending the differential value inside the SAM packet over 

the radio. In this way, many measurements, such as temperature, which only differ by 

a small change on each reading, can be sent in a minimal format. As a demonstration, 

consider the field below as an 8 byte temperature reading at t0: 

 

 

 

And this is the next reading at time t1: 

 

      

 

Now clearly the difference is only in the last two bytes, which can be gained by 

deducting the second value from the first, and is equivalent to 0x10. So in this case 

only 2 bytes need to be retransmitted, with one bit, dedicated in the SAM packet, to 

indicate whether the value is a positive or negative difference. With a sensing 

frequency of around 10 readings an hour, this can result to more than 80% decrease in 

communication at stable climate times. 

 

0x BEEF FACE      

0x BEEF FADE 
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6. Power saving methods for kOS  
The central issue of power efficiency is one of the most important assets of any 

sensor network deployed nowadays. The sensor nodes will need to remain in the 

environment for weeks or months, and their efficient battery life management is 

extremely important for an extended operation period. As previously discussed, some 

wireless sensor nodes use the ambient energy to charge up their batteries, however for 

a heavy-duty application such as ocean monitoring, adding photocells and other 

equipment may further increase the size and complexity of the sensor nodes and 

defeat the objective of “cheap and simple” modules. 

The kOS nodes need to be competitive with other types of sensor nodes developed 

round the world. The most famous of these is the Tiny “motes” developed at the 

University of California, Berkeley. Figure 20 displays the measured current 

consumption for transmitting a single radio message at maximum transmit power on 

the motes running TinyOS. 

 

 
Figure 20: Measured current consumption for transmitting a radio message at 

maximum transmission power on the motes. (Figure courtesy of Harvard University 
[ 28]) 
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In this chapter various methods and schemes are proposed and tested in order to 

minimise the power consumption of the kOS boards. The main emphasis of this 

chapter is on use of various operational modes of the PIC18F452 MCU to minimise 

its activity period. Alternative task scheduling schemes are also discussed in this 

chapter. 

 

6.1 Effective use of the SLEEP mode 

The PIC18F452 MCU has two main modes of operation, Active mode and SLEEP 

mode. In the active mode, the MCU on the kOS board is running of a crystal oscillator 

speeding 4 MHz. The MCU can run off a few different clock sources, the most 

important ones being the crystal oscillator and the Timer1 oscillator. A crystal 

oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier 

output). It is enabled by setting control bit T1OSCEN (T1CON<3>) [ 18]. The oscillator 

is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It 

is primarily intended for a 32 kHz crystal. On the kOS board, the value of this crystal 

is 32768 Hz. This figure has particular importance in scheduling tasks which will be 

explained in this section. Two 33pF capacitors are required to provide charge-up for 

the Timer1 oscillator. The start-up time can be a software hazard for applications and 

state machines so the software must provide a time delay to ensure proper start-up of 

the Timer1 oscillator. When running on the 32 kHz Timer1 Oscillator, the typical 

current consumption of the PIC is 0.2 mA, at VDD = 4.2 V and temperature range of 

40°C to 85°C. 

The standard operation of the MCU requires a crystal oscillator to be connected 

between the OSC1 and OSC2 pins. This crystal is usually a quartz resonator, 

supported by two charge-up capacitors of 33 pF and can speed as high as 40 MHz for 

up to 10 MIPS operation. When the PIC is running of the crystal operator, the typical 

current drawn is around 1.2 mA at VDD = 4.2 V and operating temperature 25°C. 

Clearly there is a huge advantage in using the high speed crystal for quick operation 

when speed is needed, however this comes at a cost of 6 times higher current drawn 

by the PIC, and the discharge capacitor current for crystal operation, which is around 

11 mA for a canned oscillator clock module (used on the PICDEM2 Plus board) 

producing Transistor-Transistor Logic (TTL) output, and 9 mA for a quartz cut crystal 

(replaced on the board for kOS operation). 



Power saving methods for kOS 

kOS Page: 53 Hamed Haddadi 

SLEEP is a feature which is available on most modern MCUs. It means that the 

operation of the programs are halted, and the MCU enters a low-power, idle mode, 

drawing only enough current to keep it alive. In PIC MCUs, SLEEP (Power-down) 

mode is the low current consumption state and is entered by executing a SLEEP 

instruction. The main device oscillator is turned off, so no system clocks are occurring 

in the device, with the exception of the optional Timer1 oscillator and the Watch-Dog 

timer (WDT), if enabled.  

For lowest current consumption in this mode, all I/O pins must be placed at either 

VDD or VSS, external circuitry must be drawing no current from the I/O pins, ADC 

module must be powered-down and external clocks are disabled. User must also pull 

all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching 

currents caused by floating inputs. The T0CKI input should also be at VDD or VSS for 

lowest current consumption. The contribution from on-chip pull-ups on PORTB 

should be considered. The MCLR pin must be at a logic high level.  

The interrupts need to be enabled in order to be able to wake the device up from 

SLEEP:   
 

// configure interrupts 

INTCONbits.GIE   = 1;  // Global Interrupt Enable 

 INTCONbits.PEIE  = 1;  // PEripheral Interrupt Enable 

 RCONbits.IPEN    = 1; // Interrupt Priority level Enable 

 

When the device executes a SLEEP instruction, the on-chip clocks and oscillator 

are turned off and the device is held at the beginning of an instruction cycle. With the 

oscillator off, the OSC1 and OSC2 signals will stop oscillating. Since all the transistor 

switching currents have been removed, SLEEP mode achieves the lowest current 

consumption of the device (only leakage currents). Enabling any on-chip feature that 

will operate during SLEEP will increase the current consumed during SLEEP. Some 

examples of these features include the WDT (7 µA) and Timer1 oscillator (6.5 µA). 

The device can wake-up from SLEEP through a list of events, from which the 

most relevant interrupts are mentioned here: 

 

1. External RESET input on MCLR pin 

2. Watchdog Timer Wake-up (if WDT was enabled) 
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3. Interrupt from INT pin, RB port change or a Peripheral Interrupt 

4. TMR1 interrupt. Timer1 must be operating as an asynchronous counter 

5. TMR3 interrupt. Timer3 must be operating as an asynchronous counter 

6. USART RX or TX (Synchronous Slave mode) 

7. Low Voltage Detect (LVD) interrupts 

 

Other peripherals cannot generate interrupts, since during SLEEP no on-chip 

clocks are present. The most important reason to use the SLEEP mode is to save 

energy. Current drawn by PIC18F452 during SLEEP mode is 0.1 µA which is 12000 

times less than the normal operation mode. The current version of kOS does not 

support SLEEP mode and this is an extremely attractive way of introducing power 

efficiency into kOS. The current Time slot transition of kOS operates by using the 

Timer1 as a counter. The Timer1 module timer/counter has the following features: 

 

• 16-bit timer/counter (two 8-bit registers; TMR1H and TMR1L) 

• Readable and writable (both registers) 

• Internal or external clock select 

• Interrupt-on-overflow from 0xFFFF to 0x0000 

 

Timer1 has a pre-scale value of 1:8 which can be set by setting bits 5-4 in the 

Timer1 Control register (T1CON <T1CKPS1:T1CKPS0>). The pre-scale enables the 

Timer value to be extended by a multiple of 8 for each count. Using Timer1 as time-

slot transition will lead to time-slot durations of around 0.52 seconds while in active 

mode: 

524.0)12(*8*)10*4/4( 166 =− Seconds 

 

 The period of each clock tick has to be multiplied by 4, as in the counter 

mode, Timer1 counts the instructions, and each instruction is 4 clock cycles, equating 

to 1 µs using a 4 MHz clocking rate. If SLEEP is enabled in this configuration, the 

average simulated SLEEP/Active duty cycle ratio can be found. Figure 21 displays 

the SLEEP/AWAKE ratio using one task in time-slot number 4.  
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SLEEP/AWAKE duty cycle ratio, with one task at time slot #4
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Figure 21: SLEEP/Active duty cycle ratio 

 

It can be seen that the average is more than 500, indicating the fact that the 

processor is in idle mode 99.8% of the time when only one task is scheduled per cycle 

(10 time-slots). This indicates that perhaps the processor can save nearly 1.2 mA of 

current 99.8 % of the time, which at VDD= 4.2 V it results in 4.4 mW less power at 

99.8% of the time.  

When tasks are scheduled to be run in different time-slots, there is a variation in 

length of activity period in different time slots. In some time slots, the only operations 

are kOS house keeping tasks. In others, there are scheduled, period applications being 

executed. Figure 22 displays an example of the time slot activity lengths, with time 

slot one being the longest, as a result of tasks being scheduled and all the initial set-up 

and application executions. Some time slots have certain tasks running, like 

messaging in time slot 4 and gossiping in time slot 11. This clearly shows that not all 

time slots are of equal value and importance. 
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 Figure 22: Activity period in time slots 

 

With the current configuration of the kOS board, Timer1 runs off the main crystal 

oscillator, with configuration such as its frequency is equal to fosc/4 which results in 1 

MHz operation of Timer1. However while in sleep, Timer1 can not run off the main 

oscillator, and the WDT generates a wake-up interrupt. For prompt operation of 

Timer1, its oscillator must be enabled and it must be operating as an asynchronous 

counter. When Timer1 oscillator is enabled, the device can be taken to sleep safely 

and it can wake up successfully upon the Timer1 counter resetting. The timer 1 can 

then be changed to the “timer” operation mode, in order to keep track of the time-

slots. However this may lead to events being delayed due to SLEEP and active modes 

using two different clocks. The best way of overcoming this issue is to set the Timer1 

to an asynchronous counter indefinitely. In this way the tasks have a global view 

towards the timing of their execution and there will be no confusion as to when a task 

must be executed next. When the pre-scale is set to zero, and Timer1 is operating of 

the attached 32768 Hz oscillator, the time-slot length can be calculated based on 

Timer1 reset from 0xFFFF to 0x0000 as: 

 

(1/32678)*216 = 2 seconds!!!!!! 

 

This is an extremely convenient choice for tracking the time-slots and even the 

global time of the network as a whole and it is tested by the author on the current kOS 
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board. It is recommended that the 2nd field trial of the SECOAS project must consider 

replacing the always-on Timer1 with the above method to achieve nearly 99% sleep 

time when only a few tasks are running. The configuration bits of Timer1 are set as 

shown below: 

 
 // TIMER1 configuration: timer1 is used for hi-priority and lo-priority interrupts 

 

 

 T1CONbits.RD16 = 1;  // 16 bit mode  

 T1CONbits.TMR1ON = 1;  // Turn timer on 

  

T1CONbits.TMR1CS = 1;  // Use external clock source.  

 T1CONbits.T1SYNC = 1;  // Do not synchronise external clock input  

  

T1CONbits.T1CKPS1 = 0; 

T1CONbits.T1CKPS0 = 0;  // 1:1 pre-scale 

  

T1CONbits.T1OSCEN = 1; // Enable timer1's internal oscillator 

  

IPR1bits.TMR1IP = 1;  // IPR=Interrupt Priority Register -> set timer1 to  

High-priority interrupt 

 PIE1bits.TMR1IE = 1;  // Enable an interrupt when timer1 overflows 

 

Power-up delays are controlled by two timers, so that no external RESET circuitry 

is required for most applications. The delays ensure that the device is kept in RESET, 

until the device power supply and clock are stable. The first timer is the Power-up 

Timer (PWRT), which optionally provides a fixed delay of 72 ms (nominal) on 

power-up only. The second timer is the Oscillator Start-up Timer (OST), intended to 

keep the chip in RESET until the crystal oscillator is stable. When the device wakes 

up from the SLEEP mode, the Oscillator Start-up Timer (OST) provides 1024 

oscillator cycle delay [ 18]. 

In the current kOS configuration, this delay would be equal to:  

(1024 / 4*106) = 2.56 * 10-4 seconds 

 

For a Timer1 oscillator of 32768 Hz, the period of each time-slot is equal to: 

 (1/32768)= 3.051 * 10-5 seconds 
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The ratio of the delay value to the time-slot length is therefore equal to:  

((2.56 * 10-4 / (3.051 * 10-5)) = 8.39 

 

The delay value is therefore just over 8 time-slots. This means that for a SLEEP 

instruction to be worth executing, the value of the remaining cycles on Timer1 until 

execution of the task should really be greater than 9, otherwise more time is wasted in 

going to SLEEP and wake-up than it would have been spent if the device was simply 

left running:  

 
 // MAIN LOOP 

while (1) {  

 

{_asm CLRWDT _endasm} // clear the Watch-Dog Timer (WDT). This is 

recommended before executing a Sleep() instruction. 

   

 

 timer1_value = ReadTimer1(); 

 

if (timer1_value < 65526){ // 65535 -9 = 65526  if TMR1 is nearly there no point 

sleeping! 

 Sleep();     // TIMER1 usually wakes the PIC up upon reset 

} 

 else 

{ 

 

kOS_status_record &= ~(isWDTWU() << WDTWU); // Check if we woke up due to the WDT 

 and Set or reset the bit flag accordingly 

} 

 

Intelligent use of the SLEEP facility enables huge power cuts (factor of 12000) at 

most of the operation times. As the number of task increases the SLEEP-Active ratio 

decreases, however by using the Timer1 oscillator, and considering the fact that in the 

SECOAS 1st and 2nd filed trial there will be less than 10 tasks running, with simple, 

short cycle operations, the use of the SLEEP is extremely important. Figure 23 

displays a graphical display of the number of active instructions, i.e. those in which 

useful processing is done, per each operation time-slot. Operational time-slot is one in 
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which there is at least one task scheduled. For the purpose of these measurements, 

tasks were scheduled on each single even time-slot and the number of cycles that CPU 

was not in SLEEP mode was counted. The most important factor to consider in these 

result is that with such heavy task scheduling, executing processor intensive tasks 

such as data gossiping and quorum sensing, the number of active instruction cycles, 

where the CPU is not in SLEEP mode, is yet well below 30% of the number of 

instruction cycles in a time-slot, which is 131072 cycles in the current version of kOS 

(v18.2). An important factor to consider here is that the scheduler object takes around 

26616 cycles on each operational timeslot where it has to update the scheduled tasks. 

This is a large overhead compared with the simplicity objective of kOS and virtually 

most of the MCU instruction cycles are taken by this. Efficiency of the scheduler has 

to be taken into consideration and some suggestions are given in the next chapter. As 

the tasks never need to be scheduled so intensively in an ocean monitoring 

application, there is no doubt in benefits of SLEEP mode. 
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Figure 23: Active instruction cycles in operational time-slots  

 

In terms of the overall current consumption of the system, currently the kOS board 

consumes around 30 mA, using some of the modification mentioned and implemented 

by author previously, such as replacement of the crystal clock module by a crystal 
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oscillator. The overall system, when adding the radio module consumes around 35 

mA when the radio is not transmitting or receiving any data. Even though the current 

consumption of the PIC is only a small fraction of the whole system, introducing sleep 

for 99% of the time increases the average life of the kOS board by 5.31% and the life 

of the overall system by 4.4%, over the estimated 14 day trial period, which is in 

important achievement. The implementation of the SLEEP facility is recommended to 

be implemented and tested in the 1st field trial of the SECOAS project. 

 

6.2 Smart-clocking the MCU 

One of the largest currents on the kOS board is due to the use of a 4 MHz 

oscillator crystal, drawing around 8.9 mA of current. There is also a current decrease 

factor of 6 when the PIC is running off the Timer1 oscillator, from 1.2 mA to 0.2 mA. 

In order to minimize the current drawn from the PIC during the normal operation and 

house-keeping, where operational speed is of minimum importance, it is worth 

considering this great power difference between the power consumption when 

compromising speed. 

The PIC18F452 device includes a feature that allows the system clock source to 

be switched from the main oscillator to an alternate low frequency clock source. This 

alternate clock source is the Timer1 oscillator. If a low frequency crystal (32 kHz, for 

example) has been attached to the Timer1 oscillator pins and the Timer1 oscillator has 

been enabled, the device can switch to a Low Power Execution mode. The clock 

switching feature is enabled by programming the Oscillator Switching Enable 

(OSCSEN) bit in Configuration Register 1H to a ’0’. The system clock source 

switching is performed under software control. The system clock switch bit, SCS 

(OSCCON<0>) controls the clock switching. When the SCS bit is ’0’, the system 

clock source comes from the main oscillator that is selected by the FOSC 

configuration bits in Configuration Register 1H. When the SCS bit is set, the system 

clock source will come from the Timer1 oscillator. The SCS bit is cleared on all forms 

of RESET. 

 
 __CONFIG _CONFIG1H, _OSCS_ON_1H & _XT_OSC_1H ; oscillator switch 

enable on & setup for an XT oscillator across OSC1 and OSC2 
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The Timer1 oscillator must be enabled and operating to switch the system clock 

source. The Timer1 oscillator is enabled by setting the T1OSCEN bit in the Timer1 

control register (T1CON). If the Timer1 oscillator is not enabled, then any write to the 

SCS bit will be ignored (SCS bit forced cleared) and the main oscillator will continue 

to be the system clock source [ 18]. 

 
 T1CONbits.T1OSCEN = 1; // Enable timer1's internal oscillator 

 

Figure 24 displays a visual estimate for the activity of the MCU. Initially, there is 

a lot of house-keeping and settings and task scheduling activities to be done, so the 

big black period indicates high processing tasks, then the device can be taken to sleep, 

indicated by blue line. Upon Timer1 reset, the device wakes up, clears the interrupt, 

checks the scheduler to find the next task which is to be executed and executes the 

task if it happens to be scheduled to run in the current time-slot. The scheduled is then 

updated and device is taken to sleep again. However as the time-slots have short 

durations, in many of them there may not be any tasks running.  

 

 
Figure 24: Time-slot transitions and task executions 

  

 Figure 25 displays the current drawn by the PIC MCU when executing the 

messaging tasks in time-slot 3. It can be seen that initially the current is 1.2 mA, 

indicating that the PIC is running of the main crystal oscillator. In the time-slots 

where no tasks are scheduled to be run, the MCU keeps running of the Timer1 

oscillator, hence drawing 0.2 mA. When there is a task scheduled in the time-slots, 

like time-slot 4 in this example, the oscillator is switched to the main crystal oscillator 

and the current draw increases to full rate. The use of a histogram in this chart 

indicates that the current stays the same until the next transition in the oscillator 

configuration or the next SLEEP cycle. 
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Figure 25: Current drawn by MCU using oscillator switching 

 

It is beneficial to operate the device using the Timer1 oscillator, and when it is 

required to have high-speed operations, such as data gossiping and compression 

algorithms, the system clock can be switched to the high speed crystal: 
 

 if (schedule_lo.slotflags != 0) {  // are there any tasks in the schedule? 

     // We have tasks in the schedule. 

  OSCCONbits.SCS = 0;  // Switch to the crystal oscillator for fast execution 

 

When the tasks are executed, the system can be restored to normal operating 

condition: 

 
  OSCCONbits.SCS = 1;  // Switch to timer1 oscillator for low-power operation 

 

There are four main applications currently running on kOS: Gossiping, data 

fusion, auto-location and messaging. If each task is scheduled once in every cycle, 

remaining 6 time-slots in the cycle can simply run using the timer1 oscillator. This is 

a saving equal to 83.3% at the 6 time-slots that are not executing any tasks and overall 

(100- (0.833 * 6) = 50 % reduction in the cycle operation. On the current SECOAS 

node configuration, this is equivalent of just over 2.1% increase in the overall system 

life over the 14 day 1st trial period. 
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In summary, oscillator switching has advantage of power saving, and 

disadvantage of the start-up delay of the oscillator, which is 1024 cycles. Some of the 

house keeping applications will never need as many as 500 cycles, so for such 

applications, use of oscillator-switching brings an unnecessary overhead. The best 

configuration for kOS is: 

• The default oscillator is the Timer1 slow oscillator. 

• For high speed applications and heavy algorithms, use Crystal clock. 

• For slow radio and RS232 send and receive, stay on Timer1 oscillator. 

  

6.3 Comparison of different power schemes  

In terms of overall power-budget planning for the SECOAS project, Table 9 

displays some configurations that can be used for the complete kOS board: 

 

 PIC MCU & 

regulator & 

clock current 

(mA) 

SLEEP & 

oscillator 

switching 

Oscillator 

switching 

current 

RS232 

ACTIVE 

& Shut-

down 

current 

(mA) 

Total 

kOS 

board, 

Active 

& 

SLEEP 

current 

(mA) 

Current 

kOS board 

(tested) 

PIC18F452, 

LM340T, 

Canned 

crystal clock 

 

Neither 

implemented

None, 1.2 

mA constant 

current 

MAX232 

7.9 mA 

active, 

12.8 mA 

TX/RX 

 

 

31.87  

1st Field 

trial 

(partially 

tested) 

PIC18F452, 

LM2936, 

Crystal 

module 

SLEEP 

implemented 

& Tested 

Not 

implemented, 

1.2 mA 

active  

MAX242,  

4mA 

Active 

 

 

13.89 
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2nd  Field 

Trial 

(theoretical) 

PIC18F452, 

LM2936, 

Crystal 

module 

BOTH 

implemented

Implemented, 

1.2 mA full 

power, 0.2 

mA Timer1 

oscillator 

MAX242, 

4mA 

ACTIVE, 

0.1 mA 

SLEEP 

 

 

 

10.17 

Final 

deployment 

(theoretical) 

PICL18F452, 

Timer1 

oscillator 

SLEEP, RC 

and Timer1 

oscillator 

Constant 0.2 

mA ACTIVE 

operation 

MAX242, 

4mA 

ACTIVE, 

0.1 mA 

SLEEP 

0.97 

Table 9: Total current drawn by the kOS board in different configurations 

 

The author believes that by implementing the suggested applications and 

methodologies in this thesis the life of the kOS board as a whole increases by at least 

70%, hence the average expected life-time on a 12 Amp-Hour battery will increase 

from the current estimated 16.6 days to 49.1 days. This is assuming 10% activity on 

RS232 sensor communication, and assuming the current heavy utilization of the PIC 

MCU, which is around 30% for experimental purposes.  

The main point that arises here is the issue of using a crystal oscillator, which 

currently draws around 8.9 mA. Elimination of crystal oscillator would have many 

advantages, and this can lead to the whole system running off the Timer1 oscillator. 

This requires the devices to initially start off an RC oscillator and then switching to 

the Timer1 oscillator. This will lead to an extremely long life of 514 days or 1 year 

and 3 months. Figure 26 and Figure 27 display the current draw and lifetime of the 

kOS board in different configurations. 
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Figure 26: Current drawn by the kOS board in different configurations 

 

Lifetime of the kOS board on a 12Ah battery

0 100 200 300 400 500 600

Current state

Using SLEEP on PIC

Oscillator switching
&RS232 Shut-down

Timer1 clocking &RS232
Shut-down

C
on

fig
ur

at
io

n

Life (days)
 

Figure 27: Lifetime of the kOS board in different configurations 

 

6.4 Dynamic resource allocation 

Successful deployment of the sensor nodes in the ocean will require careful 

analysis of their software and hardware performance in the laboratory in order to 

ensure that care has been taken for all sorts of unpredictable natural phenomena and 

their effects on the sensors and the radio modules. This analysis requires intensive 

research into the specifications of all the components used in the hardware platform 

and comprehensive testing and debugging of the software to ensure reliability. One of 

the most important facilities available on the MCU is the Watchdog Timer.  

The Watchdog Timer on PIC18F452 is a free running on-chip RC oscillator, 

which does not require any external components. This RC oscillator is separate from 
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the RC oscillator of the OSC1/CLKI pin. That means that the WDT will run, even if 

the clock on the OSC1/CLKI and OSC2/CLKO/RA6 pins of the device has been 

stopped, for example, by execution of a SLEEP instruction. During normal operation, 

a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is 

in SLEEP mode, a WDT time-out causes the device to wake-up and continue with 

normal operation (Watchdog Timer Wake-up). The TO bit in the RCON register will 

be cleared upon a WDT time-out so that the programmer can find out if a reset has 

been due to the WDT, by examining this bit. The Watchdog Timer is enabled and 

disabled by a device configuration bit. If the WDT is enabled, software execution may 

not disable this function. When the WDTEN configuration bit is cleared, the 

SWDTEN bit enables/ disables the operation of the WDT.WDT can be enabled at the 

time of programming the PIC, and with a post-scale value of 1:128 max, it can cater 

for all sorts of software failures and state machine transition errors. 

However the hardware operation does not have such a convenient facility for fault 

finding. It is intended to include many probing points for the PCB designed for kOS. 

The probe points are not available on the PICDEM2 Plus board, especially as it is a 3-

layer PCB. This entails comprehensive operation and power analysis before the field 

trials to ensure prompt operation, and most importantly to be able to measure the 

system life time. One of the most important ways of controlling the overall system 

behaviour is to use the scheduler effectively. Figure 28 displays the way scheduler 

controls the communication and inter-application messaging. The scheduler has 

complete control over the execution and setting the task times and hence it is the 

central point that can be used to control the behaviour of applications.  

It was shown in the previous section that with only two applications, i.e. data 

gossiping and quorum sensing, when scheduled at high rates, as high as 30% of the 

MCU instruction cycles are utilized. As more applications are added, this situation 

can lead to the MCU being 100% utilised most of the time, hence if some applications 

require higher periodicity, there is no resources to be allocated to them, in terms of 

CPU cycles and EEPROM and data memory. 
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Figure 28: Central role of the Scheduler 

 

A practical way of controlling the behaviour of objects is to control their CPU 

instruction cycles. Application can be assigned a maximum percentage of a time-

slot’s instruction cycles, and if it exceeds that limit, its periodicity can be reduced. A 

prototype variable is already implemented in the kOS to measure the instruction 

cycles that an object, such as messaging object, uses on each execution. This variable 

is called IC (Instruction Cycles): 

 
unsigned long messaging_total_ICs = 0;  // count the total number of instruction cycles used by the  

     Messaging object 

 

void messaging__set_IC(void) {  

 messaging_timer3_start = ReadTimer3(); 

} 

 

void messaging__update_IC(void) { 

 if (messaging_total_ICs < 0xFFFFFFFF) 

  messaging_total_ICs += (ReadTimer3()-messaging_timer3_start); 

} 

 

If an application exceeds its maximum number of allocated instruction cycles, this 

can be detected and dealt with accordingly. When there is not much pressure on 

resources, applications may be able to execute above their limits. However when the 

system resources such as CPU cycles are scarce, resources may be allocated 

dynamically to the applications. 

 
 If ((messaging_total_IC > messaging_max_IC) & (utilisation > max_utilisation)){ 

 messaging_period--; 
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 update_messaging(messaging period); 

 } 

 

The deployment of this scheme requires two initial stages: 

1. Assigning priorities to objects and applications: Each object and method in 

kOS holds a unique ID number.  
 

// object definitions 

#define OBJ_SYS_KOS               1 

#define OBJ_SYS_RADIO_INTERFACE  2 

. 

. 

// method definitions 

#define METHOD_SYS_DEFAULT_EXEC       1 

#define METHOD_SYS_RESET                      2 

. 

. 

 

These ID numbers can be used to assign priorities to applications. In this way 

the scheduler can simply check the ID number of scheduled tasks versus their 

priority, and if a higher priority application requires to be run it can simply skip 

execution of lower priority tasks if enough CPU instruction cycles are not 

available. 

 
#define GOSSIP_SEND_PRI  1  // Send priority for scheduler 

#define GOSSIP_ADD_PRI  2  // Add priority for scheduler 

#define QS_PRI    3  // Quorum priority for scheduler  

 

2. Measuring the resources required by each task on execution: This is crucial as 

it will directly affect on the resources (memory, instruction cycles) required 

for each task. Some task like messaging, need a very large number of time 

slots and if there is too many tasks scheduled, they may have to be postponed 

or cancelled in favour of more important tasks such as scheduling and radio 

buffer management. In order to take measurements of instruction cycles used 

by each task, a special function was used to read the value of timer3 (working 

as asynchronous counter) at start and end of each task execution. The 
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difference, multiplied by 8 to compensate for the timer3 pre-scale value, 

would indicate the number of used instruction cycles.  

 
void messaging__set_IC(void) { 

 messaging_timer3_start = ReadTimer3(); 

} 

// ************************* 

void messaging__update_IC(void) { 

 

 if (messaging_total_ICs < 0x0FFFFFFF) 

  messaging_total_ICs += (ReadTimer3()-messaging_timer3_start) << 4; 

 

 if (messaging_total_ICs > 100) 

  messaging_total_ICs -= 100; 

} 

 

After these measurements there is need for a table to determine the overall 

properties of applications, in order to judge their priority and execution period. Table 

10 displays an example of such table needed to analyse the current status of the 

system tasks and their scheduling priority. 

 

OBJECT/METHOD Priority Average iterative ICs Period 

A 1 400 τa 

B 0 500 τb 

C 0 10000 τc 

Table 10: System methods and their execution properties 

 

When such table is formed completely for all of the tasks, the periodicity can be 

queried from the task scheduler. This will enable us to count the duty cycle of active 

instruction cycles occupied by the tasks. 

 
  GOSSIP_ADD_PERIOD=   

 find_task_period_lo(OBJ_APPLIC_GOSSIP, METHOD_GOSSIP_ADD); 

  GOSSIP_SEND_PERIOD =  

 find_task_period_lo(OBJ_APPLIC_GOSSIP, METHOD_GOSSIP_SEND); 
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  QUORUM_QS_PERIOD =  

 find_task_period_lo(OBJ_APPLIC_QUORUM, METHOD_QS_PERFORM); 

 

 

 

The total duty cycle of the MCU application per cycle can be found by using the 

formula below: 

 

 

An example of such application is the GOSSIP_SEND method, when queried it 

has an average instruction cycle count of 2833 including a call to the MESSAGING 

object’s CONSTRUCT_SAM_PACKET method. When the GOSSIP_SEND has a 

periodic execution of every other timeslot, it will have  an overall weight of 5*2833 

instruction cycles per kOS cycle, considering the current configuration of 10 timeslots 

per cycle. GOSSIP_ADD method has 2399 instruction cycles and when executed with 

a periodic execution of every other timeslot, it has 5*2399 instruction cycles per kOS 

cycle. The current average duty cycle instructions can hence be calculated as: 

 

Duty cycles per kOS cycle= ((2833+2399)*5) = 26160 instructions per cycle 

 

If the result of this calculation is bigger than the maximum allowed, the low 

priority applications can be forced to reduce their period in order to accommodate 

tasks with higher priority or higher number of instruction cycles. Tasks can even be 

removed from the scheduler queue if necessary. For example if the GOSSIP_SEND 

method is exceeding its maximum allowed period and we have a high priority task: 

 
If ((priority =0) && (GOSSIP_SEND_PERIOD > MAX_GOSSIP_SEND_PERIOD)) 

 remove_task_lo(OBJ_APPLIC_GOSSIP, METHOD_GOSSIP_SEND); 

 

Dynamic resource allocation can be extended to control the memory usage and 

EEPROM usage of application methods and it will enable total control of the 

scheduler over the applications’ behaviour. 

 

Current average duty cycle= ∑ (period* Average IC)/number of timeslots 
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7. Conclusions and future work 
In this section, the achievements of the project are compared to the objectives, and 

future improvements are suggested. The initial objectives are listed below, with the 

respective implementation and achievements explained. 

 

• Objective 1: To develop certain requirements of the kOS architecture, 

including data communication, and to look at the competence of kOS when 

compared with other operating systems developed in this arena.  

This objective was partially met. Comparison with other operating systems was 

done carefully with other kOS developers and effort is taken to improve the 

competence of kOS. However kOS is still under-going development and work is 

yet needed to improve the requirements. The major reason for failure in total 

completion of the study into kOS communication study was the need for a radio 

module and sensor module and neither of them were available at the time. 

 

• Objective 2: To study into power efficiency and implementation of energy 

saving techniques, effective data communication strategies and maximum 

resource utilization. 

This objective was fully met. Extensive test and measurements were carried out on 

the kOS boards, and many practical improvements were made on the boards. 

Study was carried out on the resource utilization and dynamic scheduling. 

 

• Objective 3: To design and test methods to minimize the power usage of the 

sensor nodes and to calculate life on batteries in different configurations. 

This objective was fully met. SLEEP facility was added to the kOS main body, 

taking the MCU to idle state for most of the time, offering great power savings. 

Life of the sensor nodes on batteries were calculated in different configuration 

using practical measurements on the actual hardware which is going to be used for 

the sensor nodes. 
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• Objective 4: To consider the effectiveness of idle and active states and 

compare the latencies and devise competent methods for compromising 

between the use of different systems states and complexity of task operations. 

This objective was fully met. SLEEP states for the MCU and communication 

system were investigated and methods of smart-clocking were deployed and 

tested, enabling low power operation of the MCU for house-keeping tasks and full 

speed, high-power mode for the high-priority applications. 

 

This project has covered many aspects of communication, battery management 

and task management of the kOS. Implementation of the techniques investigated in 

this work can lead to great improvement in operation of the kOS. However the author 

believes that an extremely important improvement that can be made to the kOS board 

and their cost is to design an application-specific PCB for the kOS boards as opposed 

to using the Microchip PICDEM2 Plus boards. This work can lead to use of low-

voltage surface-mount MCU and components. The current cost of Microchip 

PICDEM2 Plus boards is £68 from Farnell. The total cost of a PCB required for the 

kOS board is calculated in Table 11: Estimated cost of the kOS board PCB. 

 

Component Price (£) 

PIC18F452 7.47 

MAX242 TX-RX 3.16 

LM2936 regulator 1.68 

MC256 EEPROM 3.32 

TC74A Temperature sensor 0.58 

Miscellaneous components 5 

TOTAL £21.21 

Table 11: Estimated cost of the kOS board PCB 

 

 The design of PCB will decrease the cost of the boards by around 70% as there is 

no need for the LCD module and many components that are provided on the 

PICDEM2 Plus board for evaluation purposes. Considering the fact that 100s of these 

nodes will be required in future, this is a great saving both for cost and more 

importantly for energy saving on batteries. 
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Appendix A: Time plan and project management 
 

Date Person Subject 

24/11/03 Dr L Sacks Initial project plan and agreement reached. 

22/12/03 Dr M Britton Discussion regarding the kOS status and requirements. 

03/02/04 Dr L Sacks Project objectives defined. 

05/02/04 Dr L Sacks Discussions on services available on Sensor networks. 

28/04/04 SECOAS RS232 communication and ADC use. 

06/05/04 Dr L Sacks Practical implementation of sleep and power usage. 

10/05/04 SECOAS Location and power requirements of sensor nodes. 

20/05/04 Dr M Britton Use of interrupts for RS232 and power usage  

07/06/04 Lab Support Use of RS232 UTP and fibre optics 

11/06/04 Dr J Argirakis Characteristics of UTP cable used for sensor nodes 

16/06/04 Dr M Britton LCD use, Timer1 use, low power clocks 

23/07/04 Dr L Sacks Dynamic resource allocation, CPU cycles 

16/08/04 Dr L Sacks Thesis write-up 

Table 12: Project meetings 

 

 

January-February 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 29: January-February activities 
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March-April 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 30: March-April activities 

 

May 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 31: May activities 
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June 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 32: June activities 

 

July 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 33: July activities 
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August 2004

Reading
Modelling
Write-up
Hardware Tests
Analysis

 
Figure 34: August activities 
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Figure 35: Project tasks 
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Appendix B: Software and components 
 

 
Figure 36: PIC18F452 datasheet [ 18]  
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Figure 37: MPLAB® IDE Software  [VI] 

 

 

 
Figure 38: Microchip ICD2 and PICDEM™2 Plus board [ 24] 
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Figure 39: MAX242 Datasheet  23 
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Figure 40: LM2936 Datasheet (Courtesy of National Semiconductor) 
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