
Designing	an	open	source	IoT	Hub:	bridging	interoperability	and	security	gaps	
with	MQTT	and	your	Android	device	

	
Melissa	Adriana	Simoes	Saial	Real,	Hamed	Haddadi	

Queen	Mary	University	of	London	
	

Abstract	
With	constantly	evolving	hardware	and	increased	competitiveness	from	

manufacturers	in	the	construction	of	the	IoT	enabled	home,	the	difficulty	in	managing	and	
securing	the	multitude	of	internet	enabled	devices	at	any	individual’s	disposal	is	ever	
greater,	with	competing	applications	tailored	to	manage	Bluetooth	devices,	Wi-Fi	Direct	or	
NFC	enabled	“things”.	While	the	means	of	connectivity	are	ever	increasing,	the	lack	of	a	
single	standard	of	IoT	connectivity	as	well	as	the	lack	of	a	single	interoperability	solution	
difficult	consumer	adoption	of	an	internet	enabled	home.		

The	solution	to	these	issues	is	here	presented	in	the	form	of	a	single,	simple,	user-
friendly	interface	that	can	be	intuitively	used	by	any	consumer.	Pairing	this	interface	with	an	
optimal	communication	protocol	will	assist	in	bridging	the	interoperability	gap	and	provide	
the	necessary	abstraction	layer	to	facilitate	the	interchange	of	data	regardless	of	which	
device	is	being	used.	This	paper	proposes	that	the	solution	for	both	these	issues	lies	with	
leveraging	the	capabilities	of	mobile	devices,	in	this	case	particularly	targeting	Android,	
paired	with	an	integration	of	the	lightweight	communication	protocol	MQTT.	
	
Introduction	
Designing	an	IoT	hub	is	not	a	new	concept:	Lea	and	Blackstock	[20]	proposed	it	in	2014	as	
well	and	Amazon’s	Alexa	facilitates	the	connections	to	different	intelligent	devices	in	the	
home,	acting	as	a	central	hub	for	managing	devices	such	as	Philips	Hue	lightbulbs	and	TP-
Link	Smart	Plugs.	However,	what	is	recent	is	the	motivation	to	propose	an	open	source	
solution.		
With	academic	papers	frequently	discussing	IoT	magement	solutions	without	open	sourcing	
code,	it	was	necessary	to	provide	an	accessible	and	testable	solution	that	could	be	explored	
and	tinkered	with	by	other	interested	parties.	We	will	showcase	the	different	options	
provided	and	the	only	competing	open	source	solution	thus	found	–	home	assistant.	
This	paper	will	thus	showcase	the	steps	in	building	the	ideal	hub	service,	and	how	any	
individual	can	leverage	the	power	of	an	open-source	Java	Android	application	aimed	at	
facilitating	the	discovery	of	services	provided	by	Internet	enabled	devices	within	a	local	area	
network.	Afterwards	we	demonstrate	how	simple	it	is	to	establish	a	communication	channel	
between	an	android	device	and	a	Mosquitto	broker	using	the	MQTT	Protocol	and	an	
Android	application	provided	by	the	Eclipse	IoT	project.	This	paper	will	further	explore	the	
current	options	provided	for	service	discovery	in	the	context	of	IoT,	the	most	relevant	
protocols	and	architectures	used	in	connecting	these	devices	as	well	as	the	attempts	that	
have	been	made	at	establishing	a	standard	means	of	connectivity	in	the	scope	of	the	
Internet	of	Things.	
	
Defining	IoT	
The	definition	of	IoT	varies	widely	in	academia.	For	the	scope	of	this	paper	we	begin	by	
defining	an	IoT	as	an	Internet	enabled	entity,	following	the	concept	given	by	de	Melo	et	al	in	
[1]	of	“all	application	comprising	objects	or	devices	that	can	interact	with	other	objects	and	

applications	over	the	internet”.	This	interpretation	understands	IoT	not	to	be	necessarily	
physical,	since	IoT	applications	can	be	simulated	using	services	such	as	AWS	IoT	or	IBM’s	
Bluemix.	Core	to	this	definition	is	the	capacity	of	IoT	to	connect	with	different	
objects/applications	and	carry	out	functions,	and	so,	an	IoT	device	is	here	considered	as	a	
physical	entity	while	IoT	refers	to	a	more	general	concept	of	an	interconnected	entity.		
Another	valid	interpretation	that	helps	us	define	the	architecture	in	which	IoT	is	integrated	
is	to	propose	not	just	“an	IoT”	but	to	perceive	the	Internet	of	Things	as	the	system	of	
interconnected	“things”.	This	means	that	rather	than	referring	to	IoT	as	individual	entities,	
the	word	IoT	is	referring	to	a	whole	cognitive	system,	where	“things”	contribute	data	and	
intelligence	[2].	In	this	approach,	a	“thing”	is	the	IoT	entity,	and	that	thing	can	be	a	drone,	a	
node,	an	intelligent	toaster	or	any	other	deemed	“intelligent”	machine.	The	IoT	network	
architecture	in	this	sense	describes	the	interaction	of	things	within	this	system.	A	simplified	
version	of	this	architecture	is	presented	in	[2]	and	states	its	four	main	components	as	the	
things	(sensing	devices),	a	communication	network,	a	cloud	and	the	back-end	IoT	
applications.	The	devices	use	the	IoT	applications	to	make	use	of	their	services,	and	then	
reach	the	cloud	via	the	communication	network	to	make	use	of	cloud	services	such	as	data	
storage.	An	illustration	of	this	interaction	is	also	provided	by	the	authors.	
	

	
Figure	1.	IoT	network	architecture	[2]	

	
Challenges	to	IoT	connectivity	
With	over	8	billion	connected	devices	at	the	time	of	writing	[3],	the	number	of	connected	
devices	may	fail	to	meet	the	commonly	quoted	prediction	of	Cisco’s	2011	report	[4]	of	50	
billion	devices	for	2020,	but	it	is	undeniable	that	IoT	is	quickly	becoming	commonplace	as	
the	number	of	devices	already	surpasses	the	world	population.	Thus,	IoT	becomes	a	
relevant	subject	to	research,	together	with	the	topic	of	how	we	connect,	interact	and	have	
data	collected	by	these	devices.	The	dialogue	on	these	matters	has	been	recently	intensified	
by	the	security	breaches	that	have	seen	millions	of	IoT	devices	hijacked	for	the	purpose	of	
DDoS	attacks,	which	have	exposed	critical	security	flaws	in	the	design	and	implementation	
of	IoT	communication	protocols.	One	such	example	of	these	attacks	is	the	“Mirai”	virus	

which	hijacked	over	900	thousand	routers	of	Deutsche	Telekom	customers	[5]	by	taking	
advantage	of	a	telnet	vulnerability.	
These	security	flaws	are	a	consequence	of	both	the	difficulty	in	implementing	encryption	on	
devices	with	constrained	processing	power	[17],	as	well	as	a	result	of	the	rapid	expansion	of	
IoT	technology	without	establishing	a	standard	for	a	secure	IoT	architecture.	Such	a	
standard	is	still	missing	[6],	not	due	to	lack	of	attempts	to	establish	one	-	as	we	will	explore	
in	section	two	-	but	mainly	due	to	the	rapid	creation	of	different	products	prior	to	
consideration	for	expansion,	security	and	compatibility	with	different	technologies.	This,	
paired	with	a	desire	on	the	part	of	certain	manufacturers1	to	not	provide	compatibility	
across	different	brands	of	devices,	has	caused	a	hindrance	to	the	effort	of	standardisation.	
The	need	for	a	standard	that	enables	best	security	practices	to	protect	IoT	consumers	is	thus	
the	motivation	for	this	paper	and	exploration	of	tools	that	allow	the	construction	of	an	easy-
to-use	application	which	aggregates	available	IoT	services	in	a	single	interface.		
	
Current	standardisation	efforts	
Multiple	open	protocols	appropriate	for	IoT	have	been	recognised	by	standardisation	bodies	
including	the	European	Telecommunications	Standard	Institute(ETSI),	The	Organization	of	
Structured	Information	Standards(OASIS),	the	Open	Mobile	Alliance(OMA)	and	the	Internet	
Engineering	Task	Force	(IETF).	These	include	HTTP,	CoAP	and	MQTT	[7].	In	terms	of	
communication	protocols,	these	have	different	components	that	can	be	integrated	into	
applications	to	allow	for	device	discovery	and	for	the	design	of	an	IoT	search	system.	
However,	these	protocols	do	not	define	a	single	architectural	model	as	they	can	be	simply	
integrated	into	different	IoT	design	infrastructures	that	support	them.		
Promoting	the	implementation	of	protocols,	instead	of	hardware	dependant	
communication	components,	signals	a	departure	from	how	traditional	communication	has	
been	established	between	IoT.	For	years,	Bluetooth,	ZigBee	and	other	short-range	
transmission	technologies	have	been	used	as	gateways	for	accessing	IoT	devices	and	
services	[16]	but	the	trend	towards	cloud	computing	and	service	virtualisation	has	required	
adjustments	to	be	made	on	how	we	connect	to	IoT	to	allow	for	expansibility	and	IoT	cloud	
access.	
	Flexible	interoperability	can	be	facilitated	by	the	use	of	Wireless	technologies	being	
integrated	into	IoT	devices	to	allow	direct	communication	between	things,	without	the	need	
to	be	connected	via	a	router.	This	is	the	standard	promoted	by	Wi-Fi	Direct,	endorsed	by	the	
Wi-Fi	Alliance,	which	allows	for	devices	to	talk	to	each	other	directly	via	a	software	access	
point	[8].	Rather	than	using	a	router	or	even	needing	an	internet	connection,	devices	can	
connect	to	a	group	of	multiple	devices	or	make	one-to-one	connections.	One	device	defines	
the	software	access	point	and	becomes	the	owner	of	a	given	device	group.	This	enables	
compatibility	with	older	Wi-Fi	devices	that	do	not	have	Wi-Fi	Direct,	with	the	added	benefit	
that	Wi-Fi	Direct	already	integrates	security	mechanisms	within	its	specification	and	
includes	WPA2	protection	[8].	

																																																								
1	Apple’s	proprietary	HomeKit	software	is	an	example,	as	users	are	required	to	purchase	
additional	hardware	in	order	to	bridge	the	communication	with	devices	from	different	
manufacturers.	One	example	of	this	are	the	Philips	Hue	IoT	bulbs,	which	hardware	is	
available	from:	https://www.apple.com/shop/product/HJE22VC/B/philips-hue-homekit-
upgrade-bridge-for-current-hue-bridge-users		

While	Wi-Fi	Direct	is	certainly	an	advantageous	approach	for	systems	that	are	enabled	to	
support	this	technology,	it	is	not	without	its	faults	-	authors	in	[18]	highlight	a	disadvantage	
of	using	wireless	technologies,	because	these	require	an	access	point	to	be	setup	for	Wi-Fi	
communications	to	be	established	between	devices.	The	authors	also	reflect	on	other	
hardware,	such	as	the	need	for	devices	to	be	running	the	same	OS	when	it	comes	to	
Bluetooth	communications.		
As	so,	an	ideal	solution	would	not	rely	on	a	particular	technology	for	interconnectivity	but	
instead	would	allow	for	an	abstraction	layer	from	the	underlining	technology	and	permit	
interoperability	between	different	hardware.	Most	protocols	integrated	into	IoT	only	
require	the	capacity	of	devices	to	communicate	using	HTTP/REST	methods,	which	
integration	into	IoT	communication	layers	will	be	further	explored	in	the	next	section.		
A	feature	of	protocols	is	requiring	their	respective	implementations	to	provide	for	security,	
meaning	security	concerns	are	addressed	differently	with	each	implementation.	Simply	
having	a	protocol	to	establish	communication	is	not	enough	to	program	an	IoT	
interoperability	solution	since	an	implementation	of	each	protocol	is	required	as	part	of	a	
full	application	to	be	provided	as	a	service	the	consumer	can	use.	It	is	so	important	to	
understand	how	these	protocols	function	as	interoperability	enablers	and	can	be	introduced	
into	application	design.		
	
Communication	Protocols	for	IoT	connectivity				
Machine-to-machine	(M2M)	communication	is	enabled	by	the	web	technologies	of	
HTTP/REST	that	expose	services	using	HTTP	type	requests	and	by	using	URIs	as	a	means	to	
identify	resources	[10].	Web	transfer	protocols	such	as	MQTT	and	CoAP	enable	application	
transfer	even	when	resources	are	limited	[9],	thus	making	these	ideal	to	work	with	
constrained	devices	-	which	are	defined	by	being	characteristically	low	powered	and	having	
only	a	few	kb	of	RAM	memory.	Constrained	devices	do	not	have	the	capacity	for	peak	
operating	systems	such	as	Linux	to	be	run	in	them.	
When	interacting	with	HTTP,	CoAP	provides	a	level	of	abstraction	that	avoids	using	specific	
application	data	to	provide	interaction,	many	times	using	an	intermediary	to	translate	the	
data	transmitted	in	between	both	protocols	[9].	The	usage	of	URIs	to	identify	resources	by	
both	protocols	also	facilitates	the	interchangeability	of	communications	and	traffic	
interceptions	between	them.	As	CoAP	relies	on	REST	connectivity	it	can	be	applied	
regardless	of	which	hardware	is	being	used	to	communicate,	since	clients	can	simply	use	
GET	requests	to	ask	for	resource	updates	from	the	server	containing	the	resource	[14].	
While	there	are	many	different	options	for	protocol	implementations,	the	one	chosen	for	
this	project	and	which	is	commonly	used	with	constrained	devices	is	the	simple	data	
exchange	service	MQTT.	Created	by	IBM	and	Arcom	to	facilitate	Machine	to	Machine	data	
exchange,	MQTT	is	a	lightweight	publish/subscribe	protocol	that	has	an	accepted	
standardised	specification	by	OASIS[15]	and	uses	a	client/broker	system,	which	allows	for	
two	or	more	brokers	to	connect	via	a	bridging	system.	Bridging	allows	for	the	connection	of	
brokers	by	having	one	of	the	brokers	initiate	a	bridge	by	defining	a	topic	that	all	interested	
brokers/clients	can	subscribe	to.	This	method	also	allows	for	clients	to	send	messages	to	an	
MQTT	broker,	and	those	clients	can	also	subscribe	to	the	messages	sent	to	the	broker	and	
receive	updates	notifying	them	of	new	messages.	
A	common	broker	implementation	used	with	MQTT	is	Mosquitto[12],	as	it	provides	a	
solution	that	is	also	open	source,	lightweight	and	compatible	across	different	platforms.	It	
was	the	broker	implementation	of	choice	by	the	authors	in	[13]	to	create	a	message	

transmission	system	that	relies	precisely	on	this	MQTT	and	Mosquitto	combination	to	
reliably	exchange	messages	in	an	IoT	setting.		
In	order	to	use	MQTT	with	a	client	implementation,	a	well-established	option	is	provided	by	
Eclipse	Paho	[38].	Paho	has	multiple	open	source	client	libraries	such	as	Java,	Python	and	
JavaScript	available,	and	Amazon	also	enables	the	usage	of	the	Paho	MQTT	with	WebSocket	
to	connect	to	AWS	IoT	[11]	-	WebSocket	is	a	communication	protocol	that	opens	
communication	channels	over	TCP	connections.	Within	the	next	section	we	will	explore	how	
to	use	the	MQTT	Paho	Java	Android	client	to	push	notifications	about	devices	to	a	
Mosquitto	broker.	But	firstly,	we	will	explore	different	approaches	that	integrate	the	
described	protocols	into	the	different	layers	of	their	respective	IoT	management	solutions.	
	
Former	proposed	solutions	and	implementations	
The	challenge	posed	by	providing	a	communication	structure	between	a	service	layer	and	
different	IoT	architectures	can	be	addressed	by	using	a	combination	of	protocols	and	client	
libraries	and	turning	these	into	an	API.	One	example	is	the	solution	proposed	de	Melo	Silva	
et	al	in	[1],	in	the	form	of	an	API	based	on	UPnP	standards,	using	REST	and	SOAP	requests	to	
retrieve	data	and	create	objects	off	that	data,	then	passing	the	created	object	to	a	
component	handler	module.	While	the	API	presents	a	useful	solution	to	expose	REST	
services	it	has	not	been	incorporated	in	a	complete	application	nor	do	the	authors	make	it	
available	for	use	via	an	open	source	means	such	as	GitHub,	providing	a	challenge	in	terms	of	
testing	the	functionality	of	the	described	application.		
Out	of	the	different	architecture	designs	described,	the	seemingly	most	convenient	from	a	
consumer	facing	perspective	was	the	suggestion	of	a	full	solution	as	an	application	with	an	
easy	to	use	client	interface,	which	describes	a	model	for	a	“hub”	management	system.	
Authors	in	[19]	propose	the	hub	or	gateway	methods	as	those	with	most	promise	to	deliver	
interoperability	between	devices,	with	an	example	of	such	as	system	described	in	[20].	The	
idea	presents	an	open	source	hub	that	connects	different	IoT	by	allowing	a	gateway	for	
interoperability	amongst	these.		
The	architecture	of	Lea	and	Blackstock’s	[20]	described	hub	model	contains	a	data	
aggregator	that	serves	as	an	access	point	to	services.	In	their	model,	the	authors	
implemented	a	CKAN	data	harvester	to	aggregate	data	information	about	things	and	use	the	
WotKit	API2	to	find	these	things,	or	more	specifically,	to	find	the	sensors	that	different	IoT	
has	for	the	purpose	of	locating	physical	or	virtual	IoT	device	capabilities.	The	information	
from	both	APIs	is	then	sent	in	the	form	of	a	catalogue	of	resources,	which	is	interpreted	
using	the	HyperCat	specification,	meaning	IoT	resources	that	had	been	exposed	by	both	
APIs	are	described	as	a	catalogue	of	URI	resources.	Certain	difficulties	are	pointed	out	by	the	
authors	regarding	the	use	of	this	system:	Mainly,	when	querying	the	HyperCat	catalogue	of	
items	it	is	necessary	to	request	specific	metadata	key	value	pairs,	and	since	not	all	sensor	
data	provided	by	the	chosen	WoTKit	APIs	exposed	information	in	the	form	of	metadata	keys	
and	values,	it	was	not	always	possible	to	query	available	IoT	resources	off	the	IoT	catalogue.	
Moving	on	to	work	that	has	been	recently	published	on	the	IoT	arena,	a	practical	example	of	
a	modern	device	discovery	and	management	implementation	is	home	assistant	[22].	Home	
assistant	is	a	python	based	open	source	IoT	management	application	that	has	a	simple	
command	line	installation.	Once	all	the	app	dependencies	are	installed	and	running,	home	
																																																								
2	Further	information	about	the	WotKit	API	is	available	from	
https://wotkit.readthedocs.io/en/latest/user/quickstart.html#quickstart		

assistant	provides	a	straightforward	interface	to	the	user,	displaying	all	the	devices	the	
system	is	able	to	find	within	the	network	range.	
	

	
Figure	2.	Home-assistant	interface	displayed	after	the	system	located	one	of	the	IoT	
devices	present	in	the	network,	a	Roku	NowTV	box	

The	service	discovery	methods	implemented	by	home	assistant	use	a	combination	of	
libraries	that	search	for	components	and	adjust	to	the	need	of	each	individual	component.	
Consequently,	there	are	separate	code	libraries	depending	on	what	resource	is	to	be	found,	
with	specific	code	library	extensions	and	instructions	for	adding	devices	such	as	an	Amazon	
Fire	TV	Stick3.		
Out	of	the	academic	solutions	researched,	none	provided	access	to	the	code	
implementations	of	their	respective	implementations.	The	only	complete	solution	found	
during	the	research	for	this	project	that	offers	an	open	source	repository,	which	code	could	
be	investigated	and	tested,	was	the	python	based	home-assistant	[22].	There	is	thus	the	
need	for	an	open	source	solution	that	facilitates	communication	and	transparency	between	
IoT	devices,	thus	better	bridging	both	the	theory	that	supports	the	application	design	as	well	
as	clear	explanation	of	the	components	that	enable	the	discovery	and	communication	of	
devices	within	a	given	network.		
	

Discovering	services	on	a	LAN:	The	Port	Authority	Application	

To	assess	the	efficiency	of	the	Port	Authority	app,	we	can	compare	the	found	devices	
against	those	connected	to	our	home	router,	and	so	the	least	we’ll	expect	from	an	efficient	
discovery	service	is	six	connected	devices,	the	same	ones	displayed	connected	to	our	sky	
home	router:		

																																																								
3	Instructions	on	setting	up	the	Fire	TV	extension	are	available	from	https://home-
assistant.io/components/media_player.firetv/		

Figure 3. Home router listing of connected devices

	

	

	

Port	Authority	is	an	open-source	tool	with	an	up-to-date	repository	provided	by	[23].	The	
Port	Authority	Android	application	runs	network	scans	using	a	combination	of	a	native	
service	discovery	API	as	well	as	a	few	native	Android	methods	–	Android	has	libraries	for	
Network	Service	Discovery	which	can	support	discovering	HTTP	services	when	its	
serviceType	parameters	are	set	to	“http._tcp”	or	discovering	printer	types	with	serviceType	
set	to	“_ipp._tcp”	[24].	The	application	uses	asynchronous	threading	techniques	to	make	
the	discovery	processes	run	faster	on	the	background.	

The	results	exposed	all	the	devices	connected	to	the	LAN,	while	further	providing	ports	
information	on	each	of	the	exposed	addresses.	It	discovers	seven	hosts,	since	it	lists	not	only	
the	devices	connected	on	the	network	but	also	our	sky	hub	router.	The	information	and	
implementation	provided	were	the	most	detailed	and	quickest	to	run	out	of	different	
options	tested,	reason	why	the	Port	Authority	notoriously	stood	out	as	an	optimal	discovery	
service	to	support	the	structure	of	an	IoT	home	hub.		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figures	6	and	7.		Port	Authority	discovery	results	

	

The	next	steps	were	to	trial	our	chosen	communication	protocol	before	testing	how	to	push	
messages	via	the	MQTT	broker.		

	

Setting	up	MQTT	as	a	message	broker	for	the	IoT	discovery	service	
To	create	an	IoT	hub	application,	it	is	necessary	to	integrate	a	messaging	protocol	that	can	
search	and	push	notifications	to	devices	within	a	given	LAN	or	a	virtualised	environment.	
Current	solutions	that	are	compatible	with	Internet	of	Things	devices	need	to	be	lightweight	
due	to	the	simplicity	of	hardware,	storage	and	memory	limitations	of	constrained	devices.	
The	authors	in	[21]	highlight	four	messaging	protocols	as	most	suitable	for	IoT	compatibility,	
namely	AMQP,	MQTT,	ZeroMQ	and	ZMPP.	Their	paper	compares	the	performance	of	these	
messaging	protocols	in	dealing	with	publishing	and	subscription	of	IoT	in	a	virtualised	
environment.	The	authors	in	this	comparison	paper	denoted	the	ability	of	MQTT	to	perform	
above	average	for	transporting	multiple	sensor	loads,	and	so	the	choice	MQTT	application	
derived	from	a	combination	of	factors:	MQTT	offers	a	well-documented,	up-to-date	and	
simple	to	configure	protocol,	easily	adjusted	to	fit	the	needs	of	any	IoT	application.	Further,	
MQTT	has	been	adopted	by	companies	currently	leading	the	IoT	space,	namely	the	online	
retailer	Amazon,	which	has	implemented	the	MQTT	protocol	in	its	IoT	solutions	albeit	with	a	
few	modifications	[11],	as	well	as	social	media	giant	Facebook	currently	using	MQTT	for	its	
Messenger	App	[25].	
MQTT	works	on	a	client/broker	model.	Consequently,	the	first	step	to	use	this	
communication	protocol	was	to	set	up	an	online	broker	that	would	allow	for	multiple	

Figure 8. Running the Mosquitto broker and publishing/subscribing to topics

devices	to	communicate	over	the	internet.	Firstly,	to	test	the	protocol	capabilities	we	set	up	
an	open-source	source	broker,	Mosquitto.	After	setting	up	the	broker,	a	client	
implementation	is	necessary,	and	the	one	used	was	the	open	source	Paho	Java	client	[38].		

Installing	and	launching	the	Mosquitto	broker	was	a	straightforward	process,	Figure	8	
demonstrates	its	first	usage	and	activation.		

	

	

This	use	case	exemplifies	the	properties	of	the	Mosquitto	broker,	where	we	set	Mosquitto	
to	run	in	one	Terminal,	and	simulate	a	client	by	creating	a	topic	in	another	terminal	window	
with	mosquitto_pub,	and	yet	another	client	on	a	third	terminal	window	subscribing	to	the	
same	topic	and	receiving	updates	published	to	the	broker.	We	can	also	see	on	the	right	
hand	side	how	Mosquitto	only	opens	the	connection	for	establishing	communication	and	
closes	it	straight	after	the	message	is	pushed.	This	demonstrates	why	MQTT	with	Mosquitto	
is	useful	for	constrained	devices,	as	the	connection	is	only	established	for	as	long	as	
necessary	to	transmit	the	message,	thus	occupying	minimum	bandwidth.	A	Raspberry	Pi	was	
also	used	to	keep	running	the	Mosquitto	broker	for	application	testing,	this	way	allowing	for	
different	devices	on	the	network	to	connect	to	its	server	via	SSH.	We	also	tested	using	
Mosquitto	on	the	Pi	3	(Figure	9.).	

Figure 9. Pi 3 Mosquitto broker

	

Sitting	on	top	of	the	TCP/IP	stack	means	that	MQTT	relies	on	a	client	opening	a	TCP	
connection	to	establish	an	MQTT	connection	and	send	messages	across	the	client	and	
broker	[38].	Running	MQTT	allows	for	communication	to	happen	between	devices	that	are	
running	on	the	same	LAN	via	network	sockets,	but	communication	is	also	possible	from	
outside	the	LAN	by	using	web	sockets,	which	establish	endpoints	for	internet	connections	to	
occur	between	services	and	devices.	By	adding	a	web	socket	listener	to	the	MQTT	
configuration	it	is	possible	to	transmit	messages	beyond	the	local	area	connection	[38],	but	
for	the	scope	of	this	project	we	will	limit	the	messaging	to	be	transmitted	to	devices	in	our	
LAN.		

The	purpose	of	this	paper	was	not	only	to	facilitate	the	creation	of	an	IoT	hub,	but	also	to	
gather	a	means	to	better	explore	the	services	being	offered	by	IoTs	on	a	given	LAN,	and	so	
perceive	whether	our	devices	are	exposed	to	security	risks	by	having	certain	ports	open	and	
accessible	via	the	internet.	The	next	steps	in	improving	the	application	require	
comprehending	how	best	security	practices	are	put	in	place,	and	understanding	which	
security	measures	are	currently	possible	in	the	scope	of	the	IoT	and	MQTT	in	particular.	The	
next	section	introduces	the	current	state	of	security	threats	for	these	devices	as	well	as	
proposed	methods	to	tackle	IoT	malware	threats.	

	

Security	concerns	handling	IoT	connections	
The	susceptibility	of	IoT	devices	to	hacking	became	far	more	prominent	in	the	last	quarter	of	
2016,	when	the	Mirai	virus	harvested	millions	of	connected	devices	to	form	a	botnet	that	
would	bring	down	the	DNS	provider	Dyn	[26],	thus	causing	the	unavailability	of	services	
from	websites	including	Twitter,	Netflix	and	Spotify.	This	Distributed	Denial	of	Service	
(DDoS)	attack	overwhelmed	the	capacity	of	the	service	providers	that	used	Dyn,	which	were	
flooded	with	data	sent	and	requested	by	the	hijacked	IoT	devices,	so	taking	advantage	of	
both	the	vulnerability	of	IoT	devices	and	the	vulnerability	of	DNS.	

Figure 20. Configuration of the raspberry pi IP to act
as a local server for the MQTT message exchange

Figure 21. Paho MQTT Client on an HTC One Android
Device, sending messages to the raspberry pi mosquitto
broker

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Mirai	provides	an	interesting	example	when	exposing	vulnerabilities	in	the	scope	of	IoT.	At	
its	core,	the	virus	has	a	simple	structure:	it	scans	for	random	IP	addresses	of	internet	
connected	devices	that	have	weak	password	policies,	and	uses	a	lookup	table	of	common	
username/password	combinations	to	connect	to	these	devices	via	brute-force,	that	is,	by	
attempting	all	possible	password	combinations	for	these	[30][34].	The	malware	starts	by	
exploiting	password	vulnerabilities,	and	then	inserts	the	Mirai	bot	into	the	vulnerable	
device.	The	bot	stays	latent	until	a	request	to	attack	a	given	server	is	emitted	by	the	
command	and	control	(C&C)	server.	Because	rebooting	deletes	the	virus	from	the	device,	
Mirai	also	provides	a	“keep	alive”	method	to	prevent	this	–	although	re-infection,	when	a	
vulnerable	device	is	connected	to	the	internet,	takes	only	an	estimated	5	minutes	based	on	
the	experience	conducted	by	[31].	The	McAfee	security	report	from	April	2017	provides	an	
illustration	of	the	Mirai	architecture	[34].	

Another	Mirai	particularity	is	that	it	also	provides	for	means	to	expel	other	viruses	from	the	
same	device.	It	searches	for	common	malware	executables,	deletes	them	from	the	system	
and	closes	vulnerable	ports	to	prevent	further	infections	and	gain	complete	control:	it	can	
terminate	applications	bound	to	SSH	or	Telnet	ports	[34,	p.18],	and	after	infection	it	closes	
port	22	for	SSH,	80	for	HTTP	and	23	for	Telnet.		

	

Figure	24.	Mirai	architecture	from	McAfee's	threat	report	[34]	

	

This	particular	feature	of	Mirai,	closing	ports	22,	80	and	23,	emphasises	why	IoT	devices	are	
especially	vulnerable	–	IoT	that	keeps	specific	ports	open	for	accessibility	and	remote	
management	without	requiring	any	form	of	authentication	facilitates	hijacking	of	its	
functions.	This	vulnerability	is	what	prompted	the	previously	mentioned	attack	that	took	
over	900	thousand	routers	–	Deutsche	Telekom	had	kept	TCP	port	7547	open	to	allow	for	
remote	management	of	the	routers,	without	limiting	internet	connections	from	accessing	
this	port.	

	

Figure	25.	Mirai	command	that	initiates	malware	attack	[35]	

	

The	fault	on	port	7547	was	patched	by	an	update	provided	by	the	company,	which	could	
only	be	delivered	after	customers	rebooted	their	respective	devices	to	clear	the	virus	and	
receive	the	update	[36].	However,	while	Deutsche	Telekom	customers	may	no	longer	need	
to	worry	about	this	particular	vulnerability,	combatting	new	malware	strands	such	as	Mirai	
derivatives	remains	a	challenge	since	many	of	the	devices	it	hijacks,	especially	older	IoT	
models,	contain	old	hardware	that	cannot	be	updated,	or	which	default	passwords	cannot	
be	changed	[32].	Websites	such	as	insecam	(http://www.insecam.org/en/)	expose	examples	
of	these	insecurities,	where	streams	are	provided	from	online	insecure	cameras,	where	
users	can	watch	live	camera	feeds	from	different	parts	of	the	world.	

Tackling	the	IoT	security	threat	
The	author	in	[26]	highlights	the	lack	of	a	standard	for	IoT	to	have	security	integrated	as	a	
compulsory	part	of	the	system	as	one	of	the	reasons	why	manufacturers	do	not	invest	in	
this	feature	when	producing	smart	devices.	Suggested	alternatives	to	the	current	system	
include	the	use	of	encryption,	with	one	example	being	to	replace	the	widely	used	Telnet	
with	SSH,	which,	despite	also	having	security	vulnerabilities4	[27],	provides	a	secure	
communication	session	channel	that	includes	supporting	RSA	authentication	and	encryption	
of	authentication.	Protocols	such	as	Telnet	and	FTP	on	the	other	hand,	openly	transmit	
passwords	without	encrypting	these	over	the	network,	instead	displaying	them	as	cleartext	
to	anyone	listening	on	the	network.		

To	tackle	the	Mirai	threat	specifically,	Cao		et	al	in	[32]	describe	a	method	to	use	Mirai	as	a	
virus	expeller,	by	changing	the	code	structure	of	the	virus,	eliminating	attack	functions	and	
implementing	a	heart-beat	module	which	alerts	a	server	as	to	whether	the	virus	expeller	is	
live.	This	version	of	the	malware,	proposed	as	a	“white	Mirai”,	depends	on	a	time	frame	
agreed	with	the	device	user	to	disconnect	the	device	and	have	the	virus	expeller	be	installed	
as	soon	as	the	device	is	back	on.	However,	this	still	depends	on	the	user	actively	assisting	in	
removing	the	threat	from	the	infected	device,	rather	than	having	a	more	“passive”	approach	
for	users	that	are	unaware	their	respective	IoT	may	have	been	infected.		

The	alternative	to	the	approach	proposed	by	Cao	et	al.	was	to	push	the	modified	malware	
without	user	consent,	which	results	in	a	violation	of	user	privacy.	This	premise	puts	forward	
an	entirely	different	debate	on	the	difficulty	of	patching	devices	that	have	been	hijacked	by	
Mirai-type	viruses	–	if	users	are	unaware	of	their	devices	being	infected	in	the	first	place,	
and	will	likely	remain	unaware	if	a	fix	is	deployed	to	the	device,	the	ethical	concerns	of	an	
external	party	accessing	a	private	device	become	a	point	of	debate,	even	if	the	outcome	of	
the	security	patch	is	aimed	at	protecting	the	users	privacy	while	infringing	on	user	privacy.	
With	this	consideration	in	mind,	its	best	to	design	IoT	systems	that	comply	to	best	security	
practices	and	require	authentication	mechanisms	with	the	original	implementation,	rather	
than	prioritising	ease	of	connectivity	while	sacrificing	security,	which	is	the	trade	made	by	
UPnP	devices	to	date.	

To	apply	better	security	practices,	we	need	to	consider	how	MQTT	communicates	over	the	
network.	MQTT	was	designed	without	integrated	authentication	mechanisms	since	the	
implementation	of	these	would	not	allow	for	the	protocol	to	be	as	lightweight	as	intended.	
Authentication	mechanisms	are	supported	but	these	need	to	be	implemented	on	top	of	the	
protocol	[28].	As	for	our	broker,	in	Mosquitto	the	default	configuration	does	not	use	any	
form	of	authentication,	keeping	the	port	1883	open	and	listening	for	connections	[27],	but	
there	are	multiple	options	available	to	add	an	extra	layer	of	security:	It	is	possible	to	encrypt	
the	connection	between	the	MQTT	broker,	in	this	case	Mosquitto,	and	the	MQTT	client.	For	
this,	one	option	is	to	setup	a	trusted	server	certificate	on	the	Broker	and	use	a	service	such	
as	Certbot	(https://certbot.eff.org/about/)	or	OpenSSL	to	generate	the	necessary	security	
certificates.		

																																																								
4	G.Schultz	highlights	that	particularly	OpenSSH	has	a	vast	amount	of	vulnerabilities.	

After	securing	the	connection	with	a	trusted	certificate	we	need	to	setup	a	password	by	
editing	the	configuration	file	inside	/etc/mosquitto/conf.d/default.conf	to	disable	
connections	that	have	not	been	authenticated	(anonymous	connections)	and	require	a	
password	file:	

	

The	final	step	to	securing	the	broker	is	to	configure	the	SSL	certificates	and	change	the	
default	port	that	MQTT	is	listening.	An	example	of	a	configuration	for	this	is	suggested	in	
Figure	13,	retrieved	from	[37].	

	

Figure	26.	Configuration	of	mosquitto	broker	to	point	to	certificates	and	encrypt	
connection	

	

Port	1883	localhost	is	replaced	with	a	listener	on	port	8883.	The	displayed	config	also	
displays	where	the	certificates	to	encrypt	connections	will	be	found.	

It	is	thus	straightforward	to	encrypt	MQTT	connections	and	modify	the	native	passwords	
used	by	the	broker.	As	for	the	raspberry	pi	altering	the	default	password	as	soon	as	the	
connection	is	established	for	the	first	time	was	the	best	approach	to	safeguard	from	Mirai	
infections	on	connection.	

Finally,	considering	related	work	on	this	area	and	efforts	towards	a	more	secure	IoT,	a	
security	framework	aimed	specifically	at	MQTT	is	proposed	in	[29]	where	the	authors	
implement	a	mechanism	that	uses	asymmetric	key	encryption	algorithms	to	sign	root	
certificates	with	a	public	key	and	decrypt	these	with	a	private	key,	to	allow	for	clients	to	
subscribe	to	a	given	topic	only	if	these	possess	the	correct	private	key	necessary	to	decrypt	
the	messages	sent	to	that	topic.	The	authors	test	both	RSA	and	Elliptic	Curve	algorithms	
with	feasible	results.	Amazon	IoT	also	contains	implementations	that	communicate	over	
MQTT	and	it	provides	the	option	to	encrypt	traffic	using	Transport	Layer	Security.		

	
Conclusion	
This	work	was	motivated	by	the	recent	propagation	of	IoT	dedicated	viruses,	and	for	the	
need	of	further	transparency	in	the	mapping	and	management	of	intelligent	devices.	We	
have	thus	discussed	services	that	can	act	as	a	starting	point	for	a	full	IoT	hub,	by	allowing	for	
the	exposure	of	different	types	of	devices,	whether	these	are	connected	via	IP	or	Bluetooth,	
by	allowing	the	user	to	discover	these	via	a	simple,	user-friendly	interface.		

Ideally	future	work	would	involve	adapting	the	MQTT	service	to	push	topics	to	devices	that	
can	support	a	version	of	the	MQTT	client.	However,	this	work	also	realised	that	due	to	the	
variations	in	the	software	of	each	thing,	it	is	necessary	to	build	specific	communication	
modules	that	can	initiate	connections	to	each	“thing”.	MQTT	however,	can	provide	an	
abstraction	layer	on	top	of	which	functionality	can	be	further	developed	to	indeed	establish	
connections	to	each	IoT	on	a	given	LAN.	

During	the	project	development,	we	further	explored	different	approaches	to	
interconnectivity	and	security,	as	well	as	the	intrinsic	difficulties	in	securing	the	hardware	of	
constrained	devices.	Conflicts	in	the	establishment	of	a	single	standard	that	can	gain	the	
consensus	of	IoT	device	manufacturers,	along	with	design	flaws	such	as	not	allowing	users	
to	modify	default	passwords	on	older	devices	or	designs	that	overlook	interconnectivity	
security	by	keeping	ports	open	to	incoming	unauthenticated	connections,	these	have	all	
contributed	towards	turning	internet-enabled	devices	into	malware-enabled	devices.	

On	the	future	of	IoT	security,	the	subject	is	ever	more	pertinent	with	the	growth	of	IoT	
device	sales	and	the	success	of	commercial	giants	such	as	Amazon	in	accelerating	the	
deployment	of	new	IoT	solutions	to	the	market.	It	is	possible	that	the	commercial	success	of	
Amazon	will	facilitate	its	role	in	advocating	for	best	security	practices	when	establishing	IoT	
connections,	and	so	its	standards	may	resonate	more	quickly	with	the	industry	than	the	
standards	advocated	by	the	IEEE	or	the	Wi-Fi	Alliance	–	albeit	such	standard	may	never	truly	
materialise.	As	so,	rather	than	waiting	for	a	standard	or	a	single	authority	to	lead	security	
efforts,	the	best	approach	to	enable	security	is	centralising	the	management	of	our	IoT	
devices	through	an	IoT	HuB:	using	an	easy	interface	and	an	application	that	can	provide	for	
an	abstraction	layer	to	all	devices	and	encrypt	connections	to	IoT.	This	would	be	the	solution	
to	avoid	interference	and	malware	attacks	from	the	outside	world,	thus	striving	for	a	better,	
more	secure	future	for	the	Internet	of	Things.	

	
References	
	
1. de	Melo	Silva,	C.C.,	Ferreira,	H.G.C.,	de	Sousa	Júnior,	R.T.	et	al.	Wireless	Pers	Commun	

[internet]	2016.	91:	1711.	doi:10.1007/s11277-015-3168-6.	Available	from	
http://link.springer.com.ezproxy.library.qmul.ac.uk/article/10.1007%2Fs11277-015-
3168-6	[Accessed	4th	May	2017]	

2. S.Tomovic	,	K.	Yoshigoe,	I.	Maljevic,	et	al.		Software-Defined	Fog	Network	Architecture	
for	IoT.	Wireless	Pers	Commun	[internet]	[2017]	92:	181.	doi:10.1007/s11277-016-
3845-0	Available	from	https://link-springer-
com.ezproxy.library.qmul.ac.uk/article/10.1007%2Fs11277-016-3845-0	[Accessed	14th	
July	2017]	

3. R.	Meulen.	Gartner	Says	8.4	Billion	Connected	"Things"	Will	Be	in	Use	in	2017,	Up	31	
Percent	From	2016	[internet]	[2017].	Available	from	
http://www.gartner.com/newsroom/id/3598917	[Accessed	4th	May	2017]	

4. Cisco	[2011]	[internet]	[cited	2017	April	8th]	Available	from	
http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf	
[Accessed	4th	May	2017]	

5. 	M.	Reynolds.	TalkTalk	and	Post	Office	customers	hit	by	Mirai	worm	attack	29	Nov	2016.	
Available	from	http://www.wired.co.uk/article/deutsche-telekom-cyber-attack-mirai	

6. 	K.	Batool	and	M.	A.	Niazi,	Modeling	the	internet	of	things:	a	hybrid	modeling	approach	
using	complex	networks	and	agent-based	models,	Complex	Adaptive	Systems	Modeling	
[2017]	5:4	DOI:	10.1186/s40294-017-0043-1	Published:	24	March	2017	[Internet]	
Available	from	https://casmodeling.springeropen.com/articles/10.1186/s40294-017-
0043-1	

7. L.	F.	Rahman,	T.	Ozcelebi	,		J.	J.	Lukkien.	Choosing	Your	IoT	Programming	Framework:	
Architectural	Aspects.	Future	Internet	of	Things	and	Cloud	(FiCloud),	2016	IEEE	4th	
International	Conference	[2016]	DOI:	10.1109/FiCloud.2016.49	[internet]	Available	
from	http://ieeexplore.ieee.org.ezproxy.library.qmul.ac.uk/document/7575877/	

8. Wi-Fi	Alliance.	Discover	Wi-Fi.	Wi-Fi	Direct.[2017]	Available	from	http://www.wi-
fi.org/discover-wi-fi/wi-fi-direct		

9. C.	Bormann,	A.	P.	Castellani	and	Z.	Shelby,	"CoAP:	An	Application	Protocol	for	Billions	of	
Tiny	Internet	Nodes,"	in	IEEE	Internet	Computing,	vol.	16,	no.	2,	pp.	62-67,	March-April	
2012.	doi:	10.1109/MIC.2012.29.	Available	from:	
http://ieeexplore.ieee.org.ezproxy.library.qmul.ac.uk/stamp/stamp.jsp?tp=&arnumber
=6159216&isnumber=6159208		

10. 	Goland	et	al.	Simple	Service	Discovery	Protocol/1.0	Operating	without	an	Arbiter	
<draft-cai-ssdp-v1-03.txt>.	Internet	Engineering	Task	Force	[internet]	Available	from	
https://tools.ietf.org/html/draft-cai-ssdp-v1-03	

11. AWS	IoT	Developer	Guide	[online]	Available	from	
http://docs.aws.amazon.com/iot/latest/developerguide/protocols.html	

12. 	R.	A.	Light.	Mosquitto:	server	and	client	implementation	of	the	MQTT	protocol.	The	
Journal	of	Open	Source	Software,	vol.	2,	no.	13,	May	2017,	DOI:	10.21105/joss.00265	
Available	from	http://dx.doi.org/10.21105/joss.00265	

13. 	H.C.	Hwang,	J.	Park,	&	J.G.	Shon.	Design	and	Implementation	of	a	Reliable	Message	
Transmission	System	Based	on	MQTT	Protocol	in	IoT.	Wireless	Pers	Commun	(2016)	91:	
1765.	doi:10.1007/s11277-016-3398-2[Internet]Available	from	https://link-springer-
com.ezproxy.library.qmul.ac.uk/article/10.1007%2Fs11277-016-3398-2	

14. 	CoAP	overview.	Available	from	http://coap.technology/	
15. MQTT	OASIS	specification,	Available	from	http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html	[Accessed	4th	May	2017]	
16. M.	Centenaro,	L.	Vangelista,	A.	Zanella,	and	M.	Zorzi,	Long-Range	Communications	in	

Unlicensed	Bands:	the	Rising	Stars	in	the	IoT	and	Smart	City	Scenarios.	IEEE	Wireless	
Communications,	Vol.	23,	Oct.	[2016]	[Internet]	Available	
from	https://arxiv.org/pdf/1510.00620.pdf	[Accessed	4th	May	2017]	

17. 	Ş.	Arseni,		M.	Miţoi,		A.	Vulpe.	Pass-IoT:	A	platform	for	studying	security,	privacy	and	
trust	in	IoT	[2016]	International	Conference	on	Communications	(COMM),	DOI:10.1109/	
ICComm.2016.7528258	Available	
from	http://ieeexplore.ieee.org.ezproxy.library.qmul.ac.uk/document/7528258/	
[Accessed	4th	May	2017]	

18. 	M.	B.	Chung,	H.	Choo.	Near	wireless-control	technology	between	smart	devices	using	
inaudible	high-frequencies.	H.	Multimed	Tools	Appl	[2015]	74:	5955.	
doi:10.1007/s11042-014-1901-x	Available	from	https://link-springer-
com.ezproxy.library.qmul.ac.uk/article/10.1007%2Fs11042-014-1901-x		[Accessed	4th	
May	2017]	

19. 	S.	M.A.	Oteafy	,	H.	S.	Hassanein	Resilient	IoT	Architectures	Over	Dynamic	Sensor	
Networks	With	Adaptive	Components	DOI:	10.1109/JIOT.2016.2621998Publisher:	IEEE	

[201]	Available	from	
http://ieeexplore.ieee.org.ezproxy.library.qmul.ac.uk/document/7707340/?reload=true	

20. 	R.Lea,	M.	Blackstock.	Smart	Citites:	an	IoT-centric	Approach	Proceeding	IWWISS	'14	
Proceedings	of	the	2014	International	Workshop	on	Web	Intelligence	and	Smart	
Sensing	[2014]	Available	from	
http://dl.acm.org.ezproxy.library.qmul.ac.uk/citation.cfm?id=2637096	[Accessed	4th	
May	2017]	

21. D.Happ,	N.Karowski,	T.Menzel,	V.Handziski,	A.	Wolisz.	Meeting	IoT	platform	
requirements	with	open	pub/sub	solutions.	Ann.	Telecommun.	[2017]	72:	41.	
doi:10.1007/s12243-016-0537-4.	Available	from	https://link-springer-
com.ezproxy.library.qmul.ac.uk/article/10.1007%2Fs12243-016-0537-4		[Accessed	4th	
May	2017]	

22. 	Home	assistant.	Version	tested:	0.48.0.	Released:	July	02,	2017.	Available	
from	https://home-assistant.io/		[Accessed	7th	July	2017]	

23. Port	Discovery	Android	Application,	open	source	repository.	Available	from	
https://github.com/aaronjwood/PortAuthority/		[Accessed	16th	June	2017]	

24. Android	developer	NSD	Manager	reference	documentation.	Available	from	
https://developer.android.com/reference/android/net/nsd/NsdManager.html#discover
Services(java.lang.String,	int,	android.net.nsd.NsdManager.DiscoveryListener)	
[Accessed	16th	June	2017]	

25. C.	Karasiewicz	Why	Facebook	is	using	MQTT	on	mobile	IBM	blog.	Available	from	
https://www.ibm.com/developerworks/community/blogs/mobileblog/entry/why_face
book_is_using_mqtt_on_mobile?lang=en	[Accessed	8th	July	2017]	

26. HiveMQ.	MQTT	Essentials	Available	from	http://www.hivemq.com/blog/mqtt-
essentials-part-3-client-broker-connection-establishment;	HiveMQ	MQTT	over	
Websockets	Available	from	http://www.hivemq.com/blog/mqtt-over-websockets-with-
hivemq	[Accessed	12th	July	2017]	

27. M.	Murphy.	The	Internet	of	Things	and	the	threat	it	poses	to	DNS.	Network	Security	
Volume	2017,	Issue	7,	July	2017,	Pages	17–19	[online]	19	July	2017.	Available	from	
https://doi.org/10.1016/S1353-4858(17)30072-7		[Accessed	30th	July	2017]	

28. 	G.	Schultz.	Using	ssh:	Do	security	risks	outweigh	the	benefits?	Network	Security	
Volume	Issue	10,	October	[2004],	Pages	7-10.	https://doi.org/10.1016/S1353-
4858(04)00143-6	Available	from	
http://www.sciencedirect.com.ezproxy.library.qmul.ac.uk/science/article/pii/S1353485
804001436?_rdoc=1&_fmt=high&_origin=gateway&_docanchor=&md5=b8429449ccfc
9c30159a5f9aeaa92ffb		[Accessed	27th	July	2017]	

29. C.	Lesjak	et	al.	Securing	smart	maintenance	services:	Hardware-security	and	TLS	for	
MQTT	Conference	Proceedings:	Industrial	Informatics	(INDIN),	2015	IEEE	13th	
International	Conference	on	Securing	smart	maintenance	services:	Hardware-security	
and	TLS	for	MQTT	[Accessed	28th	July	2017]	

30. A.	Mektoubi	et	al.	New	approach	for	securing	communication	over	MQTT	protocol	A	
comparison	between	RSA	and	Elliptic	Curve.	Published	in:	Systems	of	Collaboration	
(SysCo),	International	Conference	on	[2016].	DOI:	10.1109/SYSCO.2016.7831326	.	
Publisher:	IEEE	Available	from	
http://ieeexplore.ieee.org.ezproxy.library.qmul.ac.uk/document/7831326/		[Accessed	
7th	July	2017]	

31. R.	Graham.	Robert	Graham	from	Errata	Security	conducts	Camera	Experience	and	
details	the	infection	process	on	twitter.	Available	from		
https://twitter.com/ErrataRob/status/799556482719162368		[Accessed	28th	July	2017]	

32. (used	to	be	47)	Cao	et.	Al.		Hey,	you,	keep	away	from	my	device:	remotely	implanting	a	
virus	expeller	to	defeat	Mirai	on	IoT	devices.	Report	Number	PSU-S2-TR-2017-04001,	
	 arXiv:1706.05779	[cs.CR]	June	2017[online]	[2017]	Available	from	
https://arxiv.org/pdf/1706.05779.pdf		[Accessed	26th	July	2017]		

33. 	48	Y.	M.	Pa	Pa,	S.	Suzuki,	K.	Yoshioka,	T.	Matsumoto,	T.	Kasama,	C.	Rossow.	IoTPOT:	
Analysing	the	Rise	of	IoT	Compromises.	9th	USENIX	Workshop	on	Offensive	
Technologies.	USENIX	Association,	2015	[online]	Available	from	
https://www.usenix.org/system/files/conference/woot15/woot15-paper-pa.pdf	
[Accessed	14th	May	2017]	

34. McAfee	Labs	Threats	Report	April	2017	[2017]	[online]	Available	from	
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf	
[Accessed	12th	May	2017]	

35. D.	Goodin.	Newly	discovered	router	flaw	being	hammered	by	in-the-wild	attacks	
Researchers	detect	barrage	of	exploits	targeting	potentially	millions	of	devices.	
Published	in	Ars	Technica	28	November	2016	[online]	Available	from	
https://arstechnica.com/information-technology/2016/11/notorious-iot-botnets-
weaponize-new-flaw-found-in-millions-of-home-routers/		[Accessed	23rd	June	2017]	

36. 		European	Union	Agency	for	Network	and	Information	Security.	“Mirai”	malware,	
attacks	Home	Routers.	Published	December	14,	2016.	Available	from	
https://www.enisa.europa.eu/publications/info-notes/mirai-malware-attacks-home-
routers[Accessed	25th	June	2017]	

37. B.	Boucheron.	How	to	Install	and	Secure	the	Mosquitto	MQTT	Messaging	Broker	on	
Ubuntu	16.04.	December	9,	2016[online].	Available		from	
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-the-
mosquitto-mqtt-messaging-broker-on-ubuntu-16-04		[Accessed	25th	June	2017]	

38. Eclipse	Paho	Libraries.	Available	from:	https://eclipse.org/paho/clients/java/	[Accessed	
25th	June	2017]	
			

	

