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Abstract—Existing models for Internet Autonomous System
(AS) topology generation make structural assumptions about the
AS graph. Those assumptions typically stem from beliefs about
the true properties of the Internet, e.g. hierarchy and power-
laws, which arise from incorrect interpretations of incomplete
observations of the AS topology. In this paper we compare AS
topology generation models with several observed AS topologies
without making assumptions as to the relative importance of
different topological characteristics. We find that although ex-
isting AS topology models capture degree-based properties well,
they fail to capture the complexity of the local interconnection
structure between ASes.

We use a wide range of metrics including the weighted spectral
distribution and make it available as toolbox1. We show that
the shortcomings of existing models stem from underestimating
the complexity of connectivity in the core due to incomplete
understanding of collected data limitations, and narrow focus
on particular aspects of the AS topology structure.

I. INTRODUCTION

For many years researchers have modeled the Internet’s

Autonomous System (AS) topology using graphs obtained

via two main measurement techniques, i.e., BGP routing

tables [1], [2] and traceroute maps [3]. The AS topology is

an abstraction of the Internet commonly used to analyze its

macro-level characteristics and to simulate the performance

and scalability of new protocols and applications. Accurate

simulation on Internet-scale topologies requires accurate AS

topology generation models that match the observed topology

across a wide range of metrics.

In this paper we evaluate existing AS topology generation

models by comparing them with four available datasets that

represent observed Internet AS topologies. A key principle

underlying our work is to be agnostic about the topological

properties of the Internet: we consciously avoid making as-

sumptions as to the relative importance of the many topolog-

ical properties. The main reason behind our agnosticism is

the dynamic behavior of the Internet topology: it is constantly

changing and so it is difficult to pick a particular metric as the

most important when the fundamental nature of the underlying

1Available at http://www.cl.cam.ac.uk/research/srg/netos/masts/wsd.html

topology is evolving. In addition, observations of the AS topol-

ogy suffer from two problems. First, a single set of observation

points have only limited visibility of the topology. Second,

each observation technique suffers from measurement artifacts,

e.g., IP-to-AS number mapping and traceroute aliasing [4].

As a result, AS topology models make use of simplifying

assumptions about the actual topology [5], [6]. One widely

held assumption, based on biased observations, is that the AS

topology has a hierarchical structure [7] and its node-degree

distribution obeys a power-law [8].

In this comparison we rely on a wide set of commonly used

topological measures2, including a metric based on the graph

spectrum (eigenvalues of the normalized Laplacian matrix)

introduced by Fay et al. [10]. By using an extensive set

of metrics we can observe differences in the topological

properties of observed and synthetic AS topologies. We then

go on to comparing the effects of using more measurement

points for collecting topology data. This effort shows that

an increase in number of measurement points increases the

discovery of links between neighbors and hence the clustering

features of the graph, while not greatly affecting its degree

distribution.

This paper is structured as follows. Section II presents a

set of available topology models. In Section III we present

a set of observed AS topologies, collected using different

methodologies from various locations. In Section IV, we

present the results of our comparison and analyze the effect of

adding measurement points in Section V. Finally, in Section VI

we contrast our work with related work and in Section VII we

conclude and discuss potential improvements in the field of AS

topology modeling.

II. AS TOPOLOGY MODELS

In this section we describe several models that try to

reproduce properties of Internet AS topology datasets. Several

of these models are embodied in topology generators [4].

Waxman: The Waxman model [11] derives from the Erdös-

Rényi random graphs [12], where the probability of two nodes

2For a complete description of measures refer to [9]



2

being connected is proportional to the Euclidean distance

between them. The probability of interconnecting nodes is

P (u, v) = α e−d/(βL), where 0 < α, β ≤ 1, d is the

Euclidean distance between two nodes u and v, and L is the

network diameter, i.e., the largest distance between two nodes.

We use the BRITE [13] implementation of this model, which

ensures there are no disconnected components in the generated

topology by re-wiring using iterative assignment of edges.

BA2: The Albert and Barabasi [14], the second model

introduced by authors after [15] model was inspired by ob-

servations of various power laws in degree distributions and

rank exponents by Faloutsos et al. [8]. The BA model is

based on preferential attachment of new nodes to existing well-

connected nodes and on the incremental growth of the number

of nodes and the links between them. When a node i joins the

network, the probability that it connects to an existing node j

is P (i, j) =
dj∑

k∈V dk
, where dj is the degree of node j, V

is the set of nodes that have joined the network and
∑

k∈V dk

is the sum of degrees of all nodes that previously joined the

network [13].

GLP: The Generalized Linear Preference model (GLP) [5]

focuses on matching characteristic path length and clustering

coefficients. It probabilistically adds nodes and links while

preserving selected power law properties.

Inet: Inet [16] produces random networks using a prefer-

ential linear weight for the connection probability of nodes

after modeling the core of the generated topology as a full

mesh. Inet sets the minimum number of nodes at 3037, the

number of ASs in the Internet at the time of its development.

It similarly sets the fraction of nodes having degree 1 to 0.3,

based on measurements from Routeviews3 and NLANR4 BGP

tables data in 2002.

PFP: The Positive Feedback Preference (PFP) model [17],

assumes that the AS topology grows by interactive, proba-

bilistic addition of new nodes and links. It uses a nonlinear

preferential attachment probability when choosing older nodes

for the interactive growth of the network, inserting edges

between existing nodes as well as the newly added ones.

III. AS TOPOLOGY OBSERVATIONS

The AS topology can be inferred from two main sources

of data, BGP and traceroutes, both of which suffer from

measurement artifacts. BGP data is inherently incomplete no

matter how many vantage points are used for collection. In

particular, even if BGP updates are combined from multiple

vantage points, many peering and sibling relationships are not

observed [18]. Traceroute data misses alternative paths since

routers may have multiple interfaces which are not easily iden-

tified, and multi-hop paths may be hidden by tunnelling via

Multi-Protocol Label Switching (MPLS). In addition, mapping

traceroute data to AS numbers is often inaccurate [19].

Chinese: The first dataset is a traceroute measurement of the

Chinese AS Topology collected from servers within China in

3http://www.routeviews.org/
4http://www.nlanr.net/

May 2005. It reports 84 ASs, representing a small subgraph of

the Internet. Zhou et al. [20] claim that the Chinese AS graph

exhibits all the major topology characteristics of the global

AS graph. The presence of this dataset enables us to compare

the AS topology models at smaller scales. Further, this dataset

is believed to be nearly complete, i.e., it contains very little

measurement bias and accurately represents the AS topology

of that region of the Internet. Thus, although it is rather small,

we have included it as a valuable comparison point in our

studies.

Skitter: The second dataset comes from the CAIDA Skitter

project5. By running traceroutes towards a large range of

IP addresses and subsequently mapping the prefixes to AS

numbers using RouteViews BGP data, CAIDA computes an

observation of the AS topology. For our study we use the

graphs from March 2004 to match those used by Mahadevan

et al. [21]. This AS topology reports 9, 204 unique ASs.

RouteViews: The third dataset we use is derived from

the RouteViews BGP data. This is collected both as static

snapshots of the BGP routing tables and dynamic BGP data in

the form of BGP update and withdrawal messages. We use the

topologies provided by Mahadevan et al. [21] from both the

static and dynamic BGP data from March 2004. The dataset is

produced by filtering AS sets and private ASs and merging the

31 daily graphs into one. This dataset reports 17, 446 unique

ASs across 43 vantage points in the Internet.

UCLA: The fourth dataset comes from the Internet topology

collection6 maintained by Oliviera et al. [22]. These topologies

are updated daily using BGP routing tables and updates from

RouteViews, RIPE7, Abilene8 and LookingGlass servers. We

use a snapshot of this dataset from November 2007, computed

using a time window on the last-seen timestamps to discard

ASs which have not been seen for more than 6 months. The

resulting dataset reports 28, 899 unique ASs.

IV. RESULTS AND DISCUSSION

Most past comparisons of topology generators have been

limited to the average node degree, the node degree distribu-

tion and the joint degree distribution (see Section VI). The

rationale for choosing these metrics is that if those properties

are closely reproduced, then the value of other metrics will

also be closely reproduced [6].

In this section we show that current topology generators

are able to match first and second order properties well,

i.e., average node degree and node degree distribution, but

fail to match many other important topological metrics. These

higher order statistics are critical for representiveness of the

topologies [21]. We also discuss the importance of various

metrics in our analysis9.

5http://www.caida.org/tools/measurement/Skitter/
6http://irl.cs.ucla.edu/topology/
7http://www.ripe.net/db/irr.html
8http://abilene.internet2.edu/
9We present an extended set of metrics in [9] which further support our

claims; we restrict ourselves here to only the most significant results here.
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A. Methodology

For each generator we specify the required number of nodes

and generate 10 topologies of that size to provide confidence

intervals for the metrics. We then compute the metrics in-

troduced in [9] on both the generated and the observed AS

topologies. All topologies studied in this paper are undirected,

preventing us from considering peering policies and provider-

customer relationships. This limitation is forced upon us by

the design of the generators as they do not take such policies

into account.

Each topology generator uses several parameters, all of

which could be tuned to best fit a particular size of topology.

However, there are two problems with attempting this tuning.

First, doing so requires selecting an appropriate goodness-of-

fit measure. Second, tuning parameters to a particular dataset

is of questionable merit since, as we argued in Section I,

each dataset is but a sample of reality, having many biases

and inaccuracies. Typically, topology generator parameters are

tuned to match the number of links in the synthetic and

measured networks for a given number of nodes. However

we found this to be infeasible as generating graphs with equal

numbers of links from a random model and a power-law model

gives completely different outputs. For space reasons in this

paper we simply use the default values embedded within each

generator by its designers and refer the reader to [23] for an

analysis of the parameter tuning exercise.

B. Topological metrics

In this section we discuss the results for each metric

separately and analyze the reasons for differences between the

observed and the generated topologies.

Table I displays the values of various metrics (columns)

computed for different topologies (rows). Blocks of rows

correspond to a single observed topology and the generated

topologies with the same number of nodes as the observed

topology. Rows in each block are ordered with the observed

topology first, followed by the generated topologies from

oldest to newest generator. Bold numbers represent nearest

match of a metric value to that for the relevant observed

topology. For synthetic topologies, the value of the metrics

is averaged over the 10 generated instances. Note that Inet

requires the number of nodes to be greater than 3037 and

hence cannot be compared to the Chinese topology.

A small but measurable improvement is visible from older

to newer generators in some metrics such as maximum degree,

maximum coreness, and assortativity coefficient. Topology

generators have successively improved at matching particular

properties of the observed topologies. Notice the number of

links in the generated topologies that differs considerably from

the observed topology due to the assumptions made by the

generators. The Waxman and BA generators fail to capture the

maximum degree, the top clique size, maximum betweenness

and coreness. Those two generators are too simplistic in the

assumptions they make about the connectivity of the graphs to

generate realistic AS topologies. Waxman relies on a random

graph model which cannot capture the clique between core

ASes nor the heavy tail of the node degree distribution.

BA tries to reproduce the power-law node degrees with its

preferential attachment model but fails to reach the maximum

node degree, as it only adds edges between new nodes and not

between existing ones. Hence, neither of these two models is

able to create the highly-connected core of the Internet AS

toplogy. PFP and Inet manage to come closer to the values of

the metrics of the observed topologies. For Inet this is because

it assumes that 30% of the nodes are fully meshed (at the core),

whereas for PFP its rich-club connectivity model allows to add

edges between existing nodes.

1) Node degree distribution: Figure 1 displys the CCDF

of the node degree for all topologies on a log-log scale. The

Chinese topology does not exhibit power law scaling due to its

limited size, whereas all the larger AS topologies do exhibit

power-law scaling of node degrees. The Waxman generator

completely fails to capture this behavior as it is based on

a random graph model, but recent topology generators do

capture this power law behavior of the node degrees quite well,

as observed in [5]. In the case of the RouteViews and UCLA

datasets, Inet and PFP outperform other topology generators.

Note that the more complete UCLA dataset has a slightly

concave shape in contrast to RouteViews where the degree dis-

tribution displays strict power law scaling. In summary, more

recent generation models reproduce node degree distributions

well as expected since this has been a primary focus in the

literature.
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Fig. 1: Comparison of node degree CCDFs.

2) Average neighbor connectivity: Neighbor connectivity

has been far less studied than node degree, although it is

very important to match local interconnection among a node’s

neighbors when reproducing the topological structure of the

Internet [21]. Figure 2 shows the CCDF of the average

neighbor degrees for all topologies. Waxman, BA and GLP un-

derestimate the local interconnection structures around nodes.

BA and GLP typically generate graphs with far fewer links

than the observed topologies so they underestimate neighbor

degrees on average.

For the larger observed topologies, i.e., RouteViews and
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TABLE I: Comparison of AS level dataset with synthetic topologies.
Topology Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness

Chinese 211 5.02 38 2 1,324 5 -0.32 0.188 <0.01
Waxman 252 6 18 2 404 4 0.039 0.117 0.506

BA 165 3.93 19 3 1,096 2 -0.096 0.073 0.515
GLP 151 3.6 44 3 2,391 5 -0.257 0.119 0.643
PFP 250 5.95 37 10 849 9 -0.38 0.309 0.638

Skitter 28,959 6.3 2,070 16 10,210,533 28 -0.23 0.026 <0.01
Waxman 27,612 6 33 0 474,673 4 0.205 0.002 0.264

BA 18,405 4 190 0 5,918,226 2 -0.05 0.001 0.315
GLP 16,744 3.64 2,411 2 34,853,544 5 -0.089 0.003 0.496
INET 18,504 4.02 1,683 3 15,037,631 7 -0.195 0.004 0.514
PFP 27,611 6 3,000 16 13,355,194 24 -0.244 0.012 0.588

RouteViews 40,805 4.7 2,498 9 30,171,051 28 -0.19 0.02 <0.01
Waxman 52,336 6 35 0 1,185,687 4 0.205 0.001 0.25

BA 34,889 4 392 3 33,178,669 2 -0.04 0.001 0.33
GLP 31,391 3.6 4,226 4 127,547,256 6 -0.08 0.002 0.48
INET 43,343 4.97 2,828 6 31,267,607 14 -0.258 0.006 0.522
PFP 52,338 6 4,593 23 39,037,735 30 -0.252 0.009 0.564

UCLA 116,275 8.05 4,393 10 76,882,795 73 -0.165 0.05 0.32
Waxman 86,697 6 40 0 3,384,114 4 0.213 <0.001 0.246

BA 57,795 4 347 0 52,023,288 2 -003 <0.001 0.3
GLP 52,456 3.63 7391 2 371,651,147 6 -0.08 <0.001 0.486
INET 91,052 6.3 6,537 12 88,052,316 38 -0.3 0.01 0.55
PFP 86,696 6 8076 26 123,490,676 40 -0.218 0.01 0.57

 0.2

 0.4

 0.6

 0.8

 1

 0.1  1

 P
(X

<
x
)

Chinese(n=84)
Waxman

BA
GLP
PFP

 0.001  0.01  0.1  1

Skitter(n=9204)
Waxman

BA
GLP
PFP

INET

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1

 P
(X

<
x
)

Average neighbor degree

RouteViews(n=17446)
Waxman

BA
GLP
PFP

INET

 0.001  0.01  0.1  1

Average neighbor degree

UCLA(n=28899)
Waxman

BA
GLP
PFP

INET

Fig. 2: Comparison of average neighbor connectivity CCDFs.

UCLA, PFP and Inet typically overestimate the neighbor

connectivity, as they both place a large number of inter-AS

links in the core. In addition, the shapes of the neighbor

connectivity CCDF differ for the larger topologies: Inet and

PFP have two regimes, one for highly connected nodes (those

with larger neighbor connectivity), and another for low-degree

nodes. On the other hand, observed topologies have a smooth

region for the high-degree nodes followed by another region

caused by similar degree nodes. The highest degree nodes

in the UCLA topology have very high values of neighbor

connectivity. This is consistent with the belief that tier-1

providers are densely meshed.

3) Clustering coefficients: Like the average neighbor con-

nectivity, the clustering coefficient gives information about

local connectivity of the nodes. It is important to reproduce
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Fig. 3: Comparison of clustering coefficients.

clustering due to its impact on the local robustness in the

graph: nodes with higher local clustering have increased local

path diversity [21].

Figure 3 displays the clustering coefficients of all nodes in

the topologies. Error bars indicate 95% confidence intervals

around the mean values of the 10 topologies from each gener-

ator. Waxman and BA significantly underestimate clustering,

consistent with their simplistic way of connecting nodes. GLP

approximates the clustering of the Chinese topology quite well

but fails in the case of the larger observed topologies. PFP

and Inet capture clustering reasonably well compared to the

other topology generators. However, Inet does not reproduce

the tail of the distribution well due to its random edge addition

procedure once the core is fully meshed.

For medium degree nodes, clustering coefficients display
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Fig. 4: Comparison of rich-club connectivity coefficients

rather high variability which increases with the size of the ob-

served topologies. This behavior is a property of the observed

AS topology of the Internet.

In summary, all topology generators fail to properly capture

clustering, typically underestimating local connectivity. Only

Inet for the UCLA topology overestimates connectivity of low-

degree nodes while underestimating it for high-degree nodes.

Current topology generators do not adequately model local

node connectivity.

4) Rich-club connectivity: Rich-club connectivity gives in-

formation about how well-connected nodes of high degree are

among themselves. Figure 4 makes it clear that the cores of

the observed topologies are very close to a full mesh, with

values close to 1 on the left of the graphs. The error bars

again indicate the 95% confidence intervals around the mean

values of the different instances of the generated topologies.

Waxman and BA perform poorly for this metric. Only PFP and

Inet generate topologies with a dense enough core compared

to the observed topologies. Given the emphasis that PFP gives

to the rich-club connectivity, it overestimates it in the case of

the Chinese and RouteViews topologies. Inet performs well

due to its emphasis on a highly connected core, especially for

larger topologies where data has been collected across multiple

peering points.

In summary, most topology generators underestimate the

importance of rich-club connectivity of the AS topology. PFP

is the only topology generator that emphasizes the importance

of the dense core of the AS topology.

5) Shortest path distributions: Figure 5 displays the dis-

tributions of shortest path length. Apart from BA, topology

generators approximate the shortest path length distribution

of the Chinese graph quite well, due to its small size. For

the other topologies, PFP and Inet generally underestimate the

path length distribution while Waxman and BA overestimate

it. Particular generators capture the path length distribution

for particular topologies well: PFP matches Skitter’s well and

GLP is close for Routeviews. Inet and PFP both focus on high

connectivity in the core of the network, hence they both match
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Fig. 5: Comparison of shortest path distributions (number of

hops).

UCLA better than RouteViews but both still underestimate the

distribution.

In summary, shortest path length is not well captured by any

topology generator. As shortest path length is related to local

connectivity, failing to capture local connectivity is likely to

lead to such a behavior.

6) Weighted Spectral Distribution: The Weighted Spectral

Distribution (WSD) was initially introduced in [23] and further

expanded upon in [10], [24]. It is based on the eigenvalues

(i.e. spectrum) of the normalized Laplacian matrix of a graph.

As shown in [10] the difference between the WSD’s of two

graphs forms a distance metric, i.e. two graphs may have

the same WSD only if they are equal and also it can be

used to determine which of two (or more) graphs is closer

to a target graph. The WSD is composed of a curve (a

weighted distribution) parametrized by an integer N . The

curve is essentially the power in each cluster of the graph

that contributes to the probability of taking a random N -cycle

walk on a graph. For example, a random 4-cycle walk (N = 4)

is a random walk starting and ending at the same node having

passed 2 nodes in-between (a → b → c → a). The probability

of taking any such walk on a graph is simply the sum of the

WSD curve. The contribution of each cluster in the graph to

this sum is the WSD and is unique to each graph. Thus in a

very useful sense the WSD represents the structure of a graph
10.

Figure 6 displays the WSD of the Skitter data set and the

closest WSD that each topology generator is able to obtain.

First note that no topology generator achieves the same WSD

as Skitter. This indicates that there is more structure in the

observed graph than can be accounted for by any of these

models. In addition note that PFP obtains the best fit followed

closely by the BA and GLP generators. The Waxman generator

10The WSD is (i) self-replicating, i.e. The WSD can be used to estimate
the (unknown) parameters of a graph of given type (for example BA); (ii)

monotonic; as the estimated parameters deviate from the true parameters the
WSD distance increases and (iii) unique; the WSD’s of (for example) an BA
type graph and GLP type graph cannot agree.
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Fig. 6: Best fit WSDs for topology generators relative to target

Skitter data set.

Fig. 7: Best fit WSDs for topology generators relative to target

Routeviews data set.

obtains the worst fit due its random graph model that is a poor

fit for the Internet. The INET model is interesting in that it

achieves its maximum at the right point (λ = 0.4), but the

power at this point is too high. This is an artifact of the simple

way in which the core is constructed in INET, producing many

more 4-cycles than seen in the observed data set.

Figure 7 displays the Routeviews data set with the best

WSD fit obtainable from each of the topology generators.

Again none of the topology generators obtains a good fit. The

Waxman generator again performs worst. Based on the sum

squared error fit PFP performs best followed by GLP, BA and

INET although the differences are small between them.

C. Discussion

Deviations between topology models and observations have

been already studied in the literature. However, most works

so far have focussed on particular topological metrics. Con-

centrating on particular topological metrics has led to under-

estimate the mismatch between the properties of observed AS

topologies and what current models produce. When comparing

several models with several observed AS topologies as we do,

we see that current topology models mostly try to capture some

properties of one set of observations from the AS topology.

We suggest that the topology generators should focus more on

metrics such as clustering and WSD for tuning and optimizing

topology generators [23].

V. MULTIPLE VANTAGE POINTS

The previous section studied in detail how well topology

generators capture the properties of different observed AS

topologies. In this section, we will study why topology gen-

erators capture different properties of observed AS topologies

with varying degrees of success. To that end we examine the

impact on the metrics of the number of vantage points from

which BGP data is collected. For our analysis we collected

BGP data from over 40 RouteViews peering points, for a

period of 6 months from May 2007. This time period was

chosen to be the same as that used to build the UCLA dataset.

Table II shows the values of the topological metrics the

same way as in Table I, for AS topologies obtained from

different numbers of observation points. When comparing the

AS topologies using 1 and 10 observation points, we see a

significant increase in the number of nodes and links. BGP

observation points typically see a limited fraction of the AS

links, and even a subset of the nodes as the first peer on

Table I. Hence, one might also expect a significant difference

in the other metrics, and indeed, the maximum node degree

almost triples and the number of fully-meshed nodes almost

doubles. As a consequence, the size of the core increases,

indicated by the maximum coreness value. In turn, the number

of shortest paths crossing the core also increases as indicated

by the maximum betweenness. On the other hand, going from

1 to 10 observation points slightly decreases the value of the

clustering coefficient. This is because those observation points

lie in the core of the network and represent the path diversity in

the core. Having different observation points in the edge of the

network would show different results, however such data is not

available today. With 25 or more observation points the links

on the edge of the network are also discovered, contributing

to the increase of the value of the clustering coefficient. This

behavior is confirmed by a slight decrease of the value of the

maximum betweenness from 10 to 25 observation points.

Preferential attachment models originate in the belief that

small ASs tend to connect to large upstream ASs, leading to a

disassortative network. Although the value of the assortativity

coefficient is negative for the AS topology, it is not affected

by an increase in the number of observation points. The

links added by increasing the number of observation points

are neutral for the assortativity of the AS topology. One

implication is that the links that can be discovered by using

more observation points do not preferentially interconnect ASs

of any particular degree.

Our conjecture is that the observation points added from

RouteViews do not preferentially miss peer-peer relationships
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TABLE II: Comparison of AS topology datasets from multiple peering points.
Topology Nodes Links Avg. deg. Max. Top clique Max. Max. Assort. Clust. Max.

degree size betweenness coreness coef. coef. closeness

1 peer 17,952 34,617 3.86 980 4 35,069,182 9 -0.18 0.008 <0.01
10 peers 27,838 64,717 4.65 2,731 7 52,862,315 20 -0.18 0.007 <0.01
25 peers 27,885 67,659 4.85 2,808 7 49,798,002 25 -0.19 0.01 <0.01
All peers 27,924 70,064 5.02 3,371 7 70,142,726 30 -0.18 0.01 <0.01

because of the current poor visibility of peer-peer relation-

ships from core ASs. RouteViews sees the Internet mostly

from its core, not the edge. Other sources of measurements

(e.g., traceroutes) or BGP observations from different types of

ASs may reveal a different Internet structure [25], especially at

the edge where many peer-peer relationships might be hidden.

Some note of caution is necessary though. The process of

discovering new AS edges by adding observation points does

not have to reflect how many edges are actually not seen by

BGP [25].
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Fig. 8: Comparison of effects of the number of peering points.

We now turn in more detail to the effect of the number

of peering points on four topological metrics (see Figure 8).

The addition of observation points mostly affects node degree

distribution for high degree nodes. As we increase the number

of observation points, on average the neighbors of a node

will have a higher degree. However, this does not hold

for nodes whose neighbors already have high degrees (left

part of Figure 8). Those nodes correspond to stub networks

connected to very well interconnected upstream providers. For

the clustering coefficient, when moving from one to several

observation points, the difference is striking. For all node

degrees, the clustering coefficient significantly increases. On

the other hand, when moving from a few peerings to many,

the difference appears mostly for high degree nodes. This

illustrates the better observability of links in the core compared

to the edge of the network. Rich-club connectivity confirms the

previous observations in that adding a few observation points

is enough to discover the core links.

In this section we have illustrated the importance of relying

on a sufficiently large number of observation points in order

to capture a wider set of properties of the AS topology. Using

only a few observation points has led researchers to simplify

the complexity of the interconnection structure between ASs.

Taking observations of the AS topology at face value is

dangerous [25], as researchers are still trying to understand

the actual properties of the AS topology. For example, the

types and numbers of AS edges that are missed remain open

issues [25]–[27]. From our study, it is questionable whether

it is actually possible to argue about the “true” properties of

the AS topology. Proposing new AS topology models thus

faces the problem of availability of representative datasets.

Our results show that researchers must use rich datasets for a

proper understanding of the Internet AS topology. How much

better than today’s publicly available data is necessary to better

understand the AS topology is debatable.

VI. RELATED WORK

Zegura et al. [28] analyse topologies of 100 nodes generated

using pure-random, Waxman [11], exponential and several

locality based models of topology such as Transit-Stub. They

use metrics, such as average node degree, network diameter,

number of paths between nodes. They find that pure random

topologies represent properties such as locality very poorly

and so we exclude them from our comparison. They suggest

that the Transit-Stub method should be used due both to its

efficiency and the realistic average node degree its topologies

achieve.

Faloutsos et al. [8] state that three specific properties of

the Internet AS topology are well described by power laws:

rank exponent, out-degree exponent and eigen-exponent (graph

eigenvalues). This work parallelled development of many mod-

els incorporating power laws based on preferential attachment,

e.g., the Barabási and Albert [15] model.

Bu and Towsley [5] compare the effectiveness of several

topology generators at creating power law topologies that

model the AS topology. They show that existing topology

generators capture well the power law exponent, but fail to

capture clustering properties and path length. They propose

a new topology generator, GLP, based on preferential attach-

ment.

Tangmunarunkit et al. [29] provide the first comparison

of degree-based models and structural models. They compare

three categories of model generators: Waxman, Tiers [30] and

the Transit-Stub structural model, against the simplest degree

based generator, the power-law random graph (PLRG) [31].

They find that the PLRG matches these metrics better than
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random or structural models. They conclude that a stricter

hierarchy is present in the measured networks than in degree-

based generators. They also conclude that the simplest form of

degree-based model performs better than random or structural

models.

VII. CONCLUSIONS

In this paper we evaluated some existing AS topology

generation models, by comparing them with several observed

AS topologies. For this evaluation, we relied on a wide set

of topological measures, including the graph spectrum, to

carry our comparison as objectively as possible. Our analysis

revealed that increasing the number of observation points

causes deviation from strict degree power-law scaling. Existing

topology generation models over emphasize the preferential

attachment mechanism and the resulting node degree distri-

bution. Strict power-law scaling appears to be an artifact of

incomplete datasets, rather than a fundamental property of the

AS topology.

In addition to clustering and centrality properties, we ob-

serve that the highly meshed core of the Internet AS topology

must be included to generate representative synthetic topolo-

gies. The successive improvements in topology generation

models seem to result from improvements in the available

datasets. Knowing that incomplete datasets were the cause

for simplistic topology generation models, we expect that the

new generation of topology models will take into account the

insights gained in this paper.

The main insights of this paper concern the importance of

observations of the AS topology on the current assumptions

about its topological properties. Improving the representative-

ness of the available data is crucial to properly understand

the topological properties of the Internet. As we show in this

paper, it is most likely because of local structural properties

that additional data is necessary. Our insights indicate that

additional measurements should come from the edge of the

network to improve our understanding of the properties of the

AS topology.
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